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1 Introduction

We consider Markov chains on the lattice Z¢ or on subset, which have site depen-
dent transition probabilities. We denote by P a set of probability distributions on
7%, P will always contain only probabilities on a fixed finite subset of Z?, for instance

{e€Z:|e| =1}, but we will also consider other situations. A field of transition prob-

abilities is described by an element w € () def PZd, W = (Wg)yeza - F is the appropriate

product o-field on 2. The transition probabilities of our “random walk in random envi-
ronment” (RWRE for short) are then given by

P (2 +7y) L w, (y). (1.1)

We write P, for the law of a Markov chain with these transition probabilities, starting
in z. The chain itself is denoted by Xg = z, X1, Xo,... . We write I' for the set of
paths in Z?, equipped with the appropriate o-field G. It is evident that P defines a
Markovian kernel from Z? x Q to T', i.e. for any G € G, the mapping (z,w) — Py, (G)
is a measurable mapping.

We will choose w randomly. This means that we fix a probability measure P on
(Q,F). A special case is when we take the w, asi.i.d. random variables, i.e. when P is
a product measure ,uZd, 1 being a probability distribution on P.



The semi-direct product on €2 x I' is denoted by Px, i.e.
P, (Ax B) Y / Py (B)P (dw).
A

It has become common to call this the annealed law, although it is kind of a misnomer.
In contrast, P, is called the quenched law. If x = 0, we usually leave out z in the
notation. One should note that the sequence (X,) is not a Markov chain under the law
P.

An annealed property of the (X,,) is a property this sequence has under the law p.
In contrast, one speaks of a quenched property if for P-a.a. w, the property holds under
P,.,. For a law of large numbers, there is no difference: If X,,/n — v € R? holds P-a.s.
then this holds Py -a.s. for P-a.a. w. However, for convergence in law, e.g. for a CLT,
there is a big difference.

Example 1.1
In the one-dimensional case, of course w, (—1) =1 —w, (1), x € Z, and therefore, the
random environment is a sequence of (0, 1)-valued random variables. We will often write

ps instead of wy (1) . p, is the probability to move from x to the right, and ¢, defy _ Dz
is the probability to move to the left.

We also write p = (pg),cy for the whole sequence. In this case we simply take
to be (0, 1)Z. A minimal requirement will always be that the sequence is stationary
and ergodic under P : If 6 is the usual shift operator on 2, 6 (p), = Dy+1, then 0 is
assumed to be measure preserving and ergodic. As remarked above, we always assume
that 0 < p, < 1.

Example 1.2

Although I essentially concentrate on the above model where the transitions are given by
(1.1)), one should mention that there is another one, which is simpler in many respects due
to irreversibility. This is the model of random currents. One attaches the randomness
to the bonds, in the form of a random strengths. Denote by B?, the set of nearest
neighbor bonds (undirected) in Z®. Consider furthermore a law p on the positive real

d
line, and then the product measure on (]RJF)B . This measure is again denoted by P. For
€

S (R*)Bd, b € BY, the weights are &, (w) 4 oy The transition probabilities of the
RWRE are defined in the following way. If x € Z%, denote by n, the set of bonds one of
the endpoints equal to x. If y is a nearest neighbor of x, then

def E{x,y} (w)
pw (:Ea y) - Ebenz 5{; ((.d) .

In this case, p, (z,-) and p, (2',-) are not independent if |x — /| = 1. The main advan-
tage is that the above transition probabilities satisfy the detailed balance equation

Vi (2) pu (2,9) = v () Pw (¥, T) , Y,y



where
vo (@) € D6 w).
bEny

The Example does satisfy the detailed balance equation, too, but this is due to the
special nearest neighbor one-dimensional situation. (Every nearest neighbor Markov
chain on a graph without loops satisfies the detailed balance equation). Our models
don’t satisfy a detailed balance equation in higher dimensions, and also not in one
dimension if one steps away from the nearest neighbor situation. We will come to these
issues later.

Natural questions to address are laws of large numbers, i.e. does S,/n converge
P-a.s., to a constant v € R?, and is there a central limit theorem, i.e. is

X, —nv
Vn
asymptotically Gaussian distributed. As remarked above, one has clearly to distinguish
between an annealed and a quenched CLT. The former means that the above expression
is asymptotically normal under 15, but a quenched CLT would mean that for P-a.a. w,
there is a CLT under the measure F,,. The latter is rather more difficult to establish.
There had been a lot of progress on this question recently, see [I], [12], and the older
paper [4].
For the LLN, a naive guess might be that

Xy
lim —= = » el(w.),
Ji =2 B we)

but a moments reflection reveals that things cannot be as simple. The point is that the
environment acts on the path in a “non-linear” way, so it is clear that

E (Xn) # nZeE (we) s

in general, except for n =1, 2.

2 The quasi one-dimensional case

2.1 Transience and recurrence

In the strictly one-dimensional nearest neighbor case of Example a classical result
by Solomon is the following:

Theorem 2.1
Assume that the sequence {p;} c, is iid. with E(—logp;), E(—logg,) < oo, and

write
AP YR log Uz

x

Then



a) If A\t > 0 then limy_.o, X; = —00, Py almost surely.
b) If \* < 0 then limy_o X; = 00, Py almost surely.

c) If \T =0 then limsup,_,,, X; = oo, and liminf; ., X; = —o0, Py almost surely.

As a consequence, one sees that AT = 0 holds if and only if the RWRE is recurrent.
The RWRE on Z with finite range jumps is already considerably more delicate.
In the independent case, the w, are i.i.d. random variables taking values in the set
of probability measures on {—R,..., R}, R some natural number. w, (y) is then the
probability with which the RWRE (under the quenched law) jumps from x to z + y.
A quantity of crucial importance is the (random) function h,y (x), a < b, x € Z,
def
ha,b (.’,1?) = Px,w (T[b,oo) < T(—oqa}) ) (21)
where T4 denotes the first entrance time into the set A. Clearly this function satisfies
fora <z <b

hap (1) = D wa (y) hap (z+1),

ly|<R

and boundary conditions h =1 on [b,00), h =0 on (—o0, a.

In the nearest neighbor case, one can explicitly solve this equation which is not
possible in the non-nearest-neighbor case. A natural approach is to represent a vector
of h,p-values of length 2R by a shifted one through

h(z+ R _wa(R-1) 1-ws(0) _wz(=R) h(r+R—-1
(@+ ) I AWALZYER
1 0 0
= 0
h(z—R+1) 0 1 0 h(z — R)

and match the boundary conditions. This is the approach of Key [?] who generalized
the Solomon result to the non-nearest neighbor case. The recurrence and transience are
then expressed in terms of the middle Lyapunov-exponent of the products of the above
random matrices. The approach has recently been taken up by Julien Brémont [?].

In two papers with Ilya Goldsheid [2][3], we developed a somewhat different approach
in a slightly more general setup.

We consider a RWRE in a strip Zx {1,...,m}. We call the subset {k} x {1,...,m}
the k-th layer, and write it sometimes as Lay (k) . Transitions are possible from Lay (k)
to Lay (k + 1) and to Lay (k — 1), but also inside the same layer. The transitions proba-
bilities are therefore described by a sequence of triplets ( Py, Qk, Ry) of positive matrices,
where P, describes the transition probabilities from layer k to layer k+ 1, Qi from layer
k to layer kK — 1, and Ry the transitions inside layer k. For instance

Py, (i,j) = P (X1 = (K + 1,5)| Xy = (k,1)),



and similarly for the other matrices. If the triplets are chosen randomly, we have a
RWRE on the strip with transitions possible only to the neighbor layers.

It is clear that a RWRE on Z with possible jumps of maximal size R can be described
in the above setup, simply by chopping Z into pieces

oo {-R+1,...,00{1,...,RY, {R+1,....2R},...,

and declaring these piece to be the layers. Due to the restrictions of the jumps, there
are then only jumps to the neighbor layers possible.

We will write the RWRE on the strip by X; = (§;,7,), where £ is the component in
Z, and n the component in {1,...,m}.

Our basic assumptions for the first result are

o The sequence {(Py, Qx, Ri)} ez is stationary and ergodic.

e An irreducibility assumption I don’t spell out explicitly. For instance, the require-
ment that all matrix elements are positive, almost surely, is more than enough.

e Two moment assumption:

Elog(l—HRn—i-QnH)_l < o0,
Elog(1—||[R, + P.||)™" < oo.

Here the matrix norm is

def ..
A% max 3714,
J

. . . def
We will also use the maximum norm in R™ : ||z|| = max; |z;| .
Crucial in our approach are three sequences of m x m-matrices ¢,,,¥,,, and A,, n € Z.
If a < n, we define

Pan (Z’]) = P(n—l,i) (77Tn =7, Tn < Ta) )

where T), is the first hitting time of layer n. Clearly, these matrices are substochastic,
and pointwise non-decreasing or a |. So we can define

.. def . ..
¢, (1,4) = lim @, (i,5).

a——00

These matrices are also substochastic. By the Markov property, they satisfy the equa-
tions

Pnt+1 = P, + Rn(tpn—i-l + Qn(/?n@n_t,_l;
P+l = [l — R, — Qn@n]il Py



We next define a sequence of stochastic matrices ¢,, which dominate ¢,,. 1, = ¢
provided ¢,, is already stochastic. We define first the vector

n

.\ def . .
Yn+1 (J) = al{ljloo P(a,i) (77Tn+1 = J‘ Thi1 < Sa) .

Here S, is the first return time to layer a, i.e. the first hitting time after the first step.
If T+1 < S, and the chain starts in Lay (a), then the chain moves to the right of a.
The limit exists, and is independent of 7. This of course needs an argument which I don’t
give here in detail. Conditioned on {7},+1 < S, }, the chain is an inhomogeneous Markov
chain, and if we start far to the left, the chain “forgets” the starting point. This comes
from the irreducibility assumption. We also define

.\ def ..
Pn (Z) é Z(pn-l—l (Z,]),
J

which is the probability that when starting in point ¢ in Lay (n), the chain escapes to
—oo before reaching Lay (n + 1) . Then we set

..\ def . ) :
¢n+1 (7’7.]) ; Son—i—l (27.7) + (1 — Pn (Z)) Yn+1 (]) )
or in short
V= n + (1= pp) @ Ynt1.

(1 = p,, (3)) Ynt1 (j) is the probability, starting in ¢ in Lay (n) that the chain first escapes
to —oo before reaching Lay (n + 1), and “after reaching —oo”, it hits Lay (n + 1) at 7,
when hitting it the first time. Of course, in a proper formulation, one has to replace —oo
by a and let a — —oo.

Lemma 2.2
a) The matrices 1,, are stochastic matrices

b) They satisfy the equation
wn+1 = Pn + Rn¢n+1 + Qn¢nwn+1'
c¢) {1, } is the only sequence of stochastic matrices which satisfies this equation.

d) The sequence (P, Qn, Ry, ¢,,,1,,) is stationary and ergodic.

Proof. a) is evident. We give a sketch of the proof of b), assuming for simplicity,
that R, = 0.

We already know that {¢,,} satisfies this equation. Writing x,,, 1 aof (1—p,) @Yn+1,
we have

¢n+1 = P+ QnSOn‘PnJrl + Xn+1
P+ Qn (¥ — Xn) (Yni1 — Xnt1) + Xot1
= Po+ Qn¥p¥pi1 + Xnt1
—QnXn (Yns1 = Xnt1) = Qn (¥r, = Xn) X1 — QuXnXnt1-



We therefore have to show that

Xn+1 = Qan (¢n+1 - XnJrl) + Qn (¢n - Xn) Xn+1 + QanXnJrl
= QanQOn-l—l =+ QnSDanH + QanXn—H'

Now, x,,.1 describes the transition for a path “escaping to —oo” before reaching n+1. Of
course, strictly speaking, one considers the event that it reaches a before n+ 1, and then
conditions that it goes back, and one let a — —oo. Anyway, if it reaches —oo before n+1,
it certainly moves to the left when starting in layer n. These transitions are described
by Qn. Xn¥ni1 then describes the transitions (starting in layer n — 1) under the event
{T- 0o <Tp}N{Tp41007, <T-o o001, }, where O means the shift to the time layer n
is reached, ¢, X, 1 describes the transitions under the event {7}, < T_}, and X, X411
under the event {T_o < T} N {Th1+1 001, > T_ 007, } (everything starting after the
transition to layer m — 1 ). This proves (slightly sketchily) the above relations.

For the proof of ¢), and d) we refer to [2]. m

The last sequence of matrices we need is

def

An = [I - Rn - ann]_l Qn

Remark that in the nearest neighbor one-dimensional case one of course has just
¥, =1, and A,, = ¢,/pn.By Kingmans subadditive ergodic theorem

1
A+::lhn;{kgHAnAﬂ,1“.Aﬂ| (2.2)

exists almost surely, and is non-random. The following theorem describes the recurrence-
transience behavior of the RWRE in terms of AT. It is an extension of the Solomon’s
Theorem [2.1]

Theorem 2.3
a) If \T > 0, then lim;_,o & (t) = —oo almost surely

b) If \T < 0, then lim;_. & (t) = co almost surely
c) If \* =0, then limsup,_,, £ (t) = 0o, and liminf; ., S () = oo, almost surely.

The theorem also states that the RWRE is almost surely recurrent, if and only if
At =0.
It is important that there is a symmetry between “movement to the right” and

“movement to the left”. Precisely, given the stationary sequence {(Pr, Qn, Rn)},cz » We
define the sequence {(Pn, Qn, Rn>} ” by Pn def Q_n, Qn def P_,, Rn def R_,. This

ne

defines a Lyapunov exponent A\~ def \+ ({ (Pn, Qn, Rn) }) .

Lemma 2.4
AT+ A =0.



The proof is not entirely trivial, due to the fact that A™ has been introduced in an
asymmetric way. I am not giving the details of the proof, and refer to [2] for details.
The proof is done by relating our matrices to the stationary distribution of the chain.
This stationary distribution is invariant under reflection of the movement.

Corollary 2.5
If (Py, Qn, Ry) is i.i.d. and identical in law to (Qn, Py, Ry,), then AT = 0, and therefore

the walk is recurrent.

This result has also been proved by Mike Keane, and Silke Rolles [13], using Key’s
approach.
There is an easily proved dichotomy. Either one has

A) ¢, is stochastic for all n, almost surely, in which case it follows

limsupé;, = oo, a.s.

t—00
or
B)
> o (iy5) <1
J
holds for all 7 € {1,...,m}, and all n, almost surely, in which case one has

lim &, = —o0.
t—o0

The dichotomy follows easily from ergodicity, and irreducibility.

Proof of Theorem [2.3]

By Lemma a) is equivalent to b). Furthermore, c) follows easily from a), b) and
the above dichotomy.

We introduce for n > a :

def
Aa,,n = wn - Qoa,n'
Then
Aa,n—‘,—l = AnAa,nSOa,n—&—l'

We can iterate that. Because ¢, 11 = 0, we get on the one hand
Aat,nJrl = AnAnfl “““ Aa+1¢a+1§0a,a+2 """ Pnar (2-3)
and on the other, by letting a — —oo first, putting A, def Y, — ¢, we get for n >m

An—‘rl =A A1 AmAmeJrl Ceee . (2.4)

We prove first “==" in b). We therefore assume that A™ < 0. We use (2.3 with a
fixed, e.g. a = 0. This then implies that for n large, ¢, is exponentially close to the



stochastic matrix v,,. However, this implies that &, converges to 0o, at least with positive
probability. But this implies by our dichotomy, that it converges to oo with probability
1.

We next prove “<=" in a), and here we apply . Assuming that lim; o, &, = —00
implies that we are in situation B). We apply to m = 1. As A; is strictly positive,
we see that

AT =~ lim log|lpy -+ nll >0,
n—oo

because the ¢, form a stationary sequence of strictly substochastic matrices. m

Remark 2.6
One dimensional RWRESs can have the interesting property that X; — oo holds almost
surely, but X;/t — 0. In fact, if E (¢z/pz) > 1 and E (p,/qz) > 1 then

X A
lim =t = 0, P—a.s.

even if AT # 0 (see e.g. [18]). Similar phenomena appear in the strip case, too, see the
recent paper by Goldsheid [7]. I will not discuss this here.

2.2 The Sinai-behavior: Small displacement in the recurrent case

In the strictly one-dimensional i.i.d. nearest-neighbor case with A* = Elog(q/p) = 0,
Sinai.[I4] proved the remarkable result that the displacement of the RWRE after time ¢
is only of order (logt)?. This is based on the fact that the functions A, defined in
can be expressed in terms of the random walk

k
def d;
on = > log *
=1 Pi

(extended properly to a two-sided walk with ¢y = 0). For instance, if a < k < b, then

b

Py (To, < Tp) < const x Z exp [¢; — ¢,) -
j=k

The random walk {¢,} has on k-intervals of size m fluctuations of size /m. From
standard fluctuation properties of a random walk, one therefore has “valleys” of depth
const X4/m on k-intervals of size m. Using the above type of estimates, one can derive
that it takes exp [const x\/m] time steps for the RWRE to escape from such a valley.
From that one sees that the RWRE typically moves away from starting point of order m,
after a time of order exp [const x/m]. In other words, after time ¢, one has moved away
of order (log t)2 . There is a more precise formulation given below for our strip RWRE
which states that the RWRE in fact stays most of the time close to the “bottom” of
properly chosen valleys.



As this has been discussed in many survey articles (see e.g. [18]), I don’t spell out the
details here, and focus on the methods which are needed in the strip case (or non-nearest
neighbor case). For the non-nearest neighbor one-dimensional case, there is also a paper
by Letchikov [II] on the topic.

We will always assume here that the sequence {(Pn,Qn,Rn)},cz is ii.d., and we
write p for its law. The role of the above random walk in the strip case is played by

log A -+ Ad|,  k>1
o =19 0 k=0
—log || Ao - Apa|| k< -1

In contrast to the strictly neighbor one-dimensional situation, the {¢;} is not a sum of
independent random variables, but it can be represented as a functional of an ergodic
Markov chain.

Let J def {(P,Q,R) : P,Q, R non — negative, P + @) + R stochastic}, and

T E{(PQR €T (I-R)P.(I-R)"'Q>e¢, pointwise, A € N: HRlH <1- 5} .

We will assume that our transition probabilities are in J. for some £ > 0. This is
much stronger than really needed, but keeps somewhat uninteresting technical issues
out. It is evident that if (P, Q, R) € Jz, then there is a unique probability m = 7 (p ¢ r)
on {1,...,m} satisfying 7 (P + Q + R) = m. We set

def
Ja = {(P,Q,R) € J-:m(por (P—Q)1=0}.

Remark 2.7
If (P,Q,R) € J., we can consider the Markov chain on the strip which has these as
fixed transition probabilities. Evidently, this Markov chain is recurrent if and only if
(P,Q,R) € Ja. On the other hand, we can characterize recurrence also in terms of

A?FP’Q’ R) which is defined as (i but with this fixed “environment”. Recurrence is then
also characterized by )\?_P,Q, R) = 0. Therefore one has
(P,Q,R) € Ju — ATP’Q’R) =0.
Theorem 2.8
Assume that the (P,, Qn, Ry,) are i.i.d. with law u, and
(a) AT =0,

(b) supp () C J- for some € > 0, and
(¢) supp (1) & Ja-

Then there exists a sequence {b; },. of random variables, converging in distribution,

such that for any € > 0, one has
. . gt o / ! _
lim P | w: Py, s —b|<e ) >1-¢ =1. (2.5)
t—o00 (log t)

10




The sequence {b;} is defined in the same way as in the standard one-dimensional
RWRE (see [18]), but in terms of our random walk {¢;} . b; is described as the “bottom

place” of properly chosen valleys of depth 1 in the rescaled random walk { qb[k log? ] / log t} .

For details of the construction, see [I8]. The limit distribution of b; has been derived by
Kesten [9]. The proof of the theorem runs somewhat parallel to the proof in the classical
case, provided one proves a functional CLT for {¢;}. There are some complications as
the estimates are typically not quite as sharp as in the classical case, but the changes
are mainly technical. I will not go into this here, and refer the reader to [3] for details. I
will however give some explanations how to derive the CLT, and how the condition (c)
appears. This condition is not necessary for the Sinai-type behavior, but curiously it is
so for the non-nearest neighbor Z-case which can be stated as follows.
Consider a sequence {py } .5 of 1.i.d. random probability distributions on {—R, ..., R},

describing the transitions of a RWRE {X;} on Z, py, (i) being the probability of changing

from k to k + 7. Set N
Tu® {p: ", kp (k) =0

Theorem 2.9
Assume that the py are i.i.d., that there exists € > 0 such that py (1),pr (—1),px (R),
pr (—R) > ¢, almost surely, and that the support of the law of the py is not contained
in Ja. Then one has Sinai-type behavior, i.e. {X;} satisfies .

In that case, the condition on the support is actually necessary, as one has the
following

Theorem 2.10 _
Assume the same as above, except that the support of the py is contained in [J,. Then
there exists o? > 0 such that for almost all w, one has

lim Py, (t_l/QXt < x) = (.7);0,0‘2) , Ve e R,
t—o00

where ® ('; a,az) denotes the distribution function of the Gaussian distribution with

mean a and variance 0'2.

This result is somewhat similar to a result by Lawler [10], and can be proved by an
adaptation of his methods. In fact, of the support of the law of the py is in jal, then the
Markov chain is a martingale, and one can apply the martingale central limit theorem,
but there remains the difficulty to see that the variance o is positive. I will not discuss
this here, and refer to [3].

The Theorem is an immediate consequence of Theorem

I discuss now, how to derive the necessary CLT for {¢;} which leads to Theorem

One uses the machinery of random transformations. Consider the space M f g« X,
where W is the space of stochastic matrices, and X is the space of non-negative vectors
x with ||z|| = 1. (]|-|| was the maximum norm). Then g = (P, Q, R) € J. operates on M

11



by
g-(,2) € (1= R—Qu)™" P, Ax/ || Aa]))

where A4 % (I-R- Qd))_l Q.

Starting with (¢, x,), and an i.i.d. sequence {g, }, one defines recursively for n > a :

(wn-i-l? a:n+1) def Gn+1- (¥, Tn) . Letting a — —o0, one then obtains a stationary sequence
{(gns Vs Tn) b ez - The distribution of (gy,,,, z,) (for fixed n) is 4 ® v, where p is the
distribution of the g,, and v is the stationary distribution on M. The above sequence is a
stationary ergodic Markov chain with a transition operator .4, operating on (continuous)
functions F on J. x M by

def
AF (g, (¥,z)) = /F (9, 9-(, ) pu(dg') .
The random variables of interest, namely ¢, can then be written (also in the case of

AT £0) as

¢, = logl|lA,- - A1l —nAT

n

= > (log || Agaill — A7) + O (1),
=1

for n > 1, with a natural definition also for n < 0. From the standard CLT for functionals
of ergodic Markov chains one then gets the desired statement that

{ﬁb[nt]/ff\/ﬁ}

teR

converges weakly as n — oo to a (two-sided) Brownian motion, provided the variance
02 > 0. This variance is given by

02—/ {AF2—(AF)2}d(,u®I/),
Jex M
where F': J. x M — R is the unique (continuous) solution of the equation

F (g, (1,2)) = AF (g () = log | (I = R=Qu) " Qal| =x*.  (26)

If 02 > 0, then we get the functional CLT for the sequence {¢;} which leads to the
Sinai-type behavior. We prove now that our assumptions imply that o2 > 0.

Lemma 2.11
If \T =0, and 0% = 0 then supp (1) C Jal-

Proof. We first observe that if g = (P, Q, R) € J- is fixed, then there exists a unique
2g = (wg,xg) € M with g.zy = z,. This corresponds to just taking fized transition

12



probabilities given by (P, @, R) (not depending on n). (wg, :cg) is obtained by applying
the constant operation N times, and let N — oo. There exists )\:{ € R, such that

(I —R-— Q@Z)g)_l Qug = e/\;rmg,

where )\;r is the number introduced in Remark Therefore, )\;r = 0 holds if and only
if g € Ju. The statement of the lemma therefore says that if AT = 0 and ¢ = 0, then
+ . .
Ay = 0is true for all g € supp (u) .
Now,

o? = / [F (¢,9.2) / F @,9-2)#(0@]2# (dg') .

z = (¢, x), where F is the solution of . It is readily checked that the solution can
be chosen to be continuous. Therefore, if 02 = 0, then F (g, 2) does not depend on the
first coordinate, i.e. F (g,z) = F (2) for some continuous function F, for all (g, 2) in the
support of ;4 ® v. From this it follows that

log||(7 ~ R = Qu) ' Qa|| = F () - F (9.2),
g=(P,Q,R), z= (¢, ). In particular,

A =log H(I —R- ng)*lchgH _0,

which is the required conclusion. m

3 Exit distributions in dimensions > 3

We switch now to the nearest-neighbor RWRE in Z¢. For z € Z%, w,, is concentrated on
{e cZ: |e| = 1} . We use e exclusively for a nearest neighbor point to 0 in Z%. We also
assume a smallness assumption of the disorder, i.e. we require that P concentrates on
transition probabilities w, (e), satisfying

1
wz(e)—ﬁ <e.

Furthermore, of course, the w, are chosen i.i.d. We denote by u the distribution of w, :

Condition 3.1
1. p is invariant under lattice isometries, i.e. under orthogonal transformations which
leave the lattice Z¢ invariant.

2.d>3

3. € > 0 is small.
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If U cc Z%, x € U, we denote the exit distribution of the ordinary random walk by
7y (x,2), z € OU, the outer boundary of U. For the RWRE, we write Iy, (z,2). The
aim is to show that the RWRE exit distribution is close 7.

The basis is a perturbation argument. We represent the RWRE through the ordinary
one by a standard perturbation expansion for the Green’s function. We write gy for the
Green’s function of the ordinary RW with Dirichlet boundary, i.e.

[e.9]

def
gu = (lup)",

n=0

where p (z,z +e) = (2d) ", and (1yp) (z,y) = 1y (z) p (z,y). For two function F,G :
74 x 74 — R, we write F'G for the kernel

(FG) (2,9) € Y F(2,2)G(2y),

if this is defined. F™ is just the n-fold product, defined in this way, and F° (z,y) def

dzy. For o € U,z € 0U, we have gy (z,2) = ny (z,2). We also write Gy, for the
corresponding kernel for the RWRE. Put

B €) 2 1 (0) (1 (0) - o).

Then
Guw = gu + v AvwGuw. (3.1)

We can iterate this, and obtain

o0

Gu =Y (gud)" gu. (3.2)

n=0

(Convergence of such expansions will never be a problem in our setup). In particular, if

reUzedU
Iy (z,2) = (Z (gulA)" TFU) (z,2).

n=0
I present here an outline of the approach developed together with Ofer Zeitouni [5].
We have not been the first to investigate this problem. A classical paper is the one by
Bricmont and Kupiainen [6]. A CLT for diffusions in random environments is given in
[17].

3.1 Why is the disorder contracting in d > 37

We apply the perturbation expansion to the situation where ¢ (i.e. the disorder) is small
and U is a large centered box of side length L, call it Uy, but we will have to see in
which relation with € they can be.
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The crucial point is the behavior of the linear term with n = 1. For z € 9Up, and
starting point 0, we have

M(0,2) =7 (0,2)+ Y g(0,9) A(y,y+e)m(y+e,2)+» NL,(0,2),
yeU,e n=2

where NL,, denotes the non-linear terms. The first important fact one observes is that
in the linear summand, one has >, A (y,y + €) = 0, and therefore, one can rewrite it as

Y 90y Ay y+e)[r(y+ez) —m(y2).
yeU,e

The summation close to the boundary needs some care, but as this issue becomes much
more delicate later anyway, I consider here only the summation over y in the bulk,
say in Up /5. Then 7 (y, z) is of order L= and 7 (y +e,2) — 7 (y, 2) is of order L™
(These estimates can be found in Lawler’s green random walk book). The only place
where randomness enters into this summand is in A and evidently from the symmetry
assumption, one has Ez = 0, EiZ < €2, Therefore

var [ Y g(0,9) Ay, y+e)[r(y+ez) —m(y,2)] | <constxL e Y~ g(0,y)%.
YUy 2.e yeUr /2

In d > 3, we can estimate the Green’s function on U, by the Green’s function on the
infinite lattice which is bounded by const x (1 + |y|)~*"2 . Therefore

1 d>5
Z g (0, y)2 <const x{ logL d=4
yeUL /2 L d=3

For the contribution of this part to the exit distribution, we therefore get in the “worst
case” d =3

B

zeoUy,

> 90, 9) Ay, y+e)[r(y+ez) —(y 2)]| < constxeL 2
yGUL/Q,e

By using an exponential inequality, e.g. Hoeffding’s inequality, then one easily gets
good exponential bounds. We will come to this later, but one sees that the disorder
is contracting for d > 3, when one looks only at the linear term, and if one neglects
boundary effects. If one does the calculation carefully, one gets that the disorder is also
borderline contracting in d = ﬂ

However, the nonlinear terms start to make trouble for fixed ¢ and large L. First
of all, there is a complicated dependency structure emerging. One can try to estimate
the non-linear terms very crudely, by estimating uniformly in w. Roughly, estimating

LA paper treating the two-dimensional case is in preparation (with Ofer Zeitouni).
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(guA)" 7y, taking only the contribution from the bulk, one gets (for d = 3), an L?
from every gy, then an ¢ from the A, and finally an L' from 7y (after summing over
the boundary, but taking into account the gain by one derivative). Therefore a crude
bound for the total variation is given by (L2€)n L~!. In order to sum that, one has the
requirement that L?c < 1. Of course, there is no possibility to argue in this crude way,
if ¢ is fixed and L become large.

The basic idea is to try to safe this kind of arguments by doing a multiscale argument.
This means that one does not jump from scale 1 immediately to scale L, but one jumps
so in a number of intermediate steps, for which one can argue somewhat crudely when
jumping from one scale to the next.

3.2 The exact setting

The main scheme is to describe an induction scheme how to transfer information about
exit distributions one has on scales <[ to information on a bigger scale L (or better on
scales < L). One essentially takes

LY (log)?.
I will be more precise about this later. The reason one is increasing the scale faster than
exponential is that this enables one to treat “bad” regions very crudely. The “badness”
is washed out quickly just by the fast increase of the scale, as we will see.
Instead of boxes, we take (lattice) Euclidean balls

VLdéf{:):EZd:\xlgL},

where |z| is the Euclidean norm. (L here is not necessarily an integer). We also write

Vi () L s (The reason that we didn’t work with square boxes is that there are
some “corner problems” which create troubles in the induction step. For the final result,
this does not play any role, but for the induction procedure, we found that square boxes
are cumbersome to handle).

For x € Vp,z € 0Vp, we write 7y, (x, z) for the probability that ordinary random
walk starting in x exits Vp, at z, and Iy, (x,2) for the corresponding quantity of the
RWRE.

We now want to represent the exit distribution for the large scale L through exit
distributions on the smaller scale, and then use an averaging argument for the linear
term in the perturbation expansion, and crude estimates in the non-linear terms. There
are a number of difficulties.

1. We found that we should always work with exits from centered balls. The advan-
tage is that the distribution (under P) of the exit distribution inherits trivially the
symmetry properties of the original RWRE transition probabilities.

2. Close to the boundary of the big L-box, one has to refine the scale of the smaller
boxes. This creates a number of technical difficulties.
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3. One of the main difficulties: It is clear that the disorder is not contracting when
measured in total variation. This is (hopefully) coming from random effects close
to the boundary. The main result is therefore a result on the contracting of the
disorder when looking at

(Ipe—7r) XL

where Y7, is a certain smoothing kernel.

4. With P-probability 1 there are arbitrary large “bad” regions in Z?, and one has to
show that they don’t have a big influence (which they do for d = 1).

The smoothing kernel is defined in a somewhat complicated way. The motivation for
this choice is that it is the “right one” for the induction procedure, as we will see. Here
is the definition:

2
2 (0,2) & / W (8) mer, (0, 2) dt,
1
where ¢ : R — R" is a smooth probability density with support on [1,2]. ¥ (x, 2) def
Y1 (0,z — x) . The reason for making this averaging over the radius is simply to have a
kernel which is smooth enough. For instance, clearly

sup X7, (z,2) < const x L™

T,z

and with a bit of work

sup |21 (x4 e,2) — X (z + e, 2)| < const x L~4 7L,

xT,z,e
The main result we have is the following

Theorem 3.2
There exists g > 0 such that for ¢ < €g, the following is true: For any n > 0, there
exists a smoothing radius ¢ (n) such that

Jim P (|11, = 71) S (0,0)]],, = 1) =0,

The theorem states that if we want to have an estimate n for the deviation in total
variation, then one has to apply a certain fixed smoothing on a scale ¢ (n). The form
of the smoothing kernel is actually not important in the final result. The special form
above is only useful in the induction procedure.

Remark 3.3
If one is ready to increase the smoothing scale, then the difference goes to 0 : If {; — oo,
then there is a sequence 1n; — 0 such that

Jim P (|0~ m1) S, 0], 2 n2) =0,
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The main induction procedure, we apply, makes only statement about “globally
smoothed” exit distributions, and “non-smoothed” ones. I describe this now precisely:
We call the ball V7, (z) good provided

(ML = 7L) Sr (2, ) |lyay < (log L) ™7, (3.3)

and
I = 7r) (@, ) lyar < 6. (3.4)

(This depends also on a parameter § > 0).

It however turns out that the appearance of “bad” regions makes it necessary to
distinguish between different degrees of badness, but fortunately, only four levels are
needed. We call a box Vi, () “bad on level i”, i < 3, provided

(log L)~ H=D/ < (11, — 71) B (2, ) || yar < (log L)~ T4

var

and still is satisfied. Balls which are neither good, nor bad on any of the levels
1,2, 3, are called “really bad”, or bad on level 4.

Our main inductive result is the following: For § > 0, K € N, we denote by
Cond (9, K) the condition that for all L < K

P (VL (0) is bad on level ) < exp [— (1—(4—1i)/13)(QogL)?|, i =1,2,3,4.

Proposition 3.4
There exists §g > 0 such that for 0 < § < dg, there exist g9 (§), and Lo € N, such that
ife < €0, Ll > L(), then

Cond (8, L1) = Cond (5, Li (log L1)2> .

We take here only L; (log L1)2 on the right hand side, the point being that if L <
Ly (log L1)?, then L/ (log L)* < L;. In the above formulation, I am actually cheating
slightly. One has in fact to include still a slightly more complicated version regarding the
smoothing scheme. This is due to some additional complications close to the boundary,
but it is a very minor issue, and I leave a discussion of it out.

It is trivial to start the recursion scheme by choosing € small enough. The above
proposition at first sight gives only results about globally smoothed exit distributions
(and non-smoothed ones, but the differences between RWRE and ordinary RW does
not go to 0). The proof of the above proposition however derives from Cond (4, L)
properties about exits on the larger scale with smoothings on intermediate scale, too,
but for the advancement of the induction, only the globally smoothed, and the non-
smoothed information is needed.

We have to fix transition kernels for the movement inside a “big” ball V. The
movement is by exit distributions on smaller centered balls, but we also perform an
additional randomization of the radius. We also have to refine the jumping radius close
to the boundary. We call this procedure the “coarse graining scheme”. The coarse
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graining scheme is described by fixing for every x € Vi the relevant radius p; (z).
This is always chosen such that in such a way that V5, (x) C Vi, except possibly
for the “very last layer”. Let df (x) L dist (z,0Vy). If dy, (z) > 2L/ (log L)*, then
pr () def ~L/ (log L)* , where v > 0 is still a small parameter, we did not specify. 1/10
is probably fine. For dy, (z) < 2L/ (log L)* the coarse graining radius starts to shrink. It
shrinks linearly in the region dy, (z) < L/ (log L)* , where we put p;, (z) & vdr, () . In the
region L/ (log L)® < dp, (z) < 2L/ (log L)* , we make a smooth transition between these

behaviors. Our basic transition kernel for the ordinary RW is py, (z, -) ey Yo, @) (T,)
(Remark that if p;, (z) < 1/2, then this is just the ordinary nearest neighbor transition).
It is also evident that the exit distribution from V7, for a Markov chain with these
transition probabilities is just the ordinary RW exit distribution 7. We do the same
coarse graining for the RWRE, and write PL,W (z,-) for these kernels.

This is the coarse-graining scheme we use for the “non-smoothed” estimate. For the
other one, we make a small modification: We stop the refinement of the coarse-graining
for points dr, (z) < L/ (log L)' . For such points, we just take the exit distribution from
Vior /(log L)' (x)NVy, also without averaging over the radius. I don’t distinguish the two
coarse-graining schemes in the notation, but will tell always which one to take. In this

case we write py () def 10L/ (log L)™.
We write gr, for the Green’s function of py;

)
e > (Lyp)",
n=0
and A L for the difference ]ADL’w — pr.. Then the perturbation expansion gives
. — 75 = gnALwmr + 0LAL Wi AL wmr + .. (3.5)
The reason for choosing the smoothing kernel in the particular way we did is that
gL =1+ 1y, prir.

Therefore, we split
AL,ng = AL,w + (AL,wleﬁL> gL>

and then we use our induction assumption on the smoothed version in the second sum-
mand, and the non-smoothed one in the first summand. The above expansion is then

oo o
. Ak N Ak oA Ak
Oy, —7mp = § JLAL 7L+ E GLAT Wi PLIL AP +
k=1 ki ka=1

and the philosophy is to estimate HA’E wleﬁLH < 681 (log p)f9 in good regions.
’ var

One of the main issues are to have good estimates on g;. Essentially it should be
like the Green’s function of the ordinary nearest neighbor RW with a scaling due to
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the spreading. The ORW Green’s function should be like the Brownian motion Green’s
function, which is explicitly known in a ball of radius L
2—d>

where wy is the volume of the unit ball. The ordinary RW Green’s function g% is
then essentially the same except for a cutoff of the singularities. For discussing gr,, one
has to use the appropriate “coarse-graining” scale py, ().

1 _ L ||
BM _ _2=d _

RW

Pseudotheorem
For all what is necessary, g1, (z,y) behaves for y # z like p; (y) ¢ g9®W (z,y), and also
the (discrete) derivatives behave like the derivatives of p; (y) ™% g™V (z,y).

We didn’t prove such a theorem, which is certainly not true in this strong form,
but whenever we needed something, we proved an appropriate statement ad hoc. For
instance, an easy (and evident) property is that the expected total time spent by our
coarse grained walk in a region {z € Vi, : t < dy (x) < 2t} for t < L/ (log L)* is of order
1, uniformly in ¢, and uniform in the starting point. Therefore, the expected time, the
walk spends in {dL () < L/(log L)3} is of order log L. These things are easy. More

delicate are estimates on derivatives.

3.3 Advancement of the smoothed estimate

We use the coarse graining scheme with the stopped boundary refinement in the “last
layer” {:1; :dp (z) < L/ (log L)lo} .

An essential issue is how to treat bad regions. The main reason for stopping the
refinement of the coarse-graining scheme (for the smoothed estimates) at L/ (log L)™ is
that we don’t have to cope with complicated bad regions. The reason is the following
elementary estimate. We call a point =z € Vi, bad if V;(x) is bad (on any of the four
levels), for any I between p; (z) < I < 2p; (z), of dr, (z) > L/ (log L)'?, or in case
dr (z) < L/ (log L))", if V., () (%) is bad. We denote by By, the set of bad points.

Lemma 3.5
If Cond (8, Ly) is satisfied, and L < Ly (log L1)*, then

1 2
P (U, .y, {BrwC Vo, @}) = 1= o5 exp |~ (log L)?]
Proof. If By, is not contained in some V5, (,) (), then there are points x,y € Br,

sufficiently apart such that {x € By} and {y € Br} are independent events. Therefore,
under Cond (J, L1) , one estimates this probability by

const x L2 [eXp [— <1 - f;)) (log L)2”2 < ﬁ exp [— (log L)Q} .
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]

If the bad region B, cannot be confined in the way above, we simply trash the box Vp,
declare it to be “really bad”. (Of course, we do the same with any of the boxes V7, (),
when used in the next induction step). From the above estimate, this is well inside the
desired bound. Therefore, we essentially have to deal only with at most region of the
form Vs, (2 () € Vi which contains any bad points. The first thing to do is to get
estimates when all points are “good”. We want to derive under this condition estimates
which then can be used also to treat the possible one bad region. In order to do this
(formally), we “goodify” possible bad points by exchange there the RWRE coarse grained
transition probabilities Py, (z,-), simply by pr, (z,-). Then we want to do two things

e Prove that after this “goodifying” manipulation, we have

. _ 1
[peoodified (H(HL B 7TL) ELHvar > (log L) 9) < E exp |:— (log L)ﬂ . (36)

e If a constant C' > 0 is chosen properly, then

Pgoodiﬁed (éL (I, VPL(Z/) (y)) > CgL (:L‘, vaL(y) (y)) , some T,y € VL) (37)
1

< 1o &*P {— (log L)ﬂ .

The last point will help to control the bad region.

I will sketch the argument leading to the first estimate. In the perturbation expansion
(3.5)) we first consider the linear term, but in fact we have also take the ones coming
from the non-linear ones, without any smoothing possibility within the A’s. Therefore,
we consider we have to estimate

> gLAfrLYL. (3.8)
k>1

The summation over k is no problem, we in fact estimate Alzfl in total variation simply
by 6*~1. There are some minor complications from these terms, but essentially they can
be handled like the £ = 1 term with an additional exponentially decreasing factor, so
we consider only the kK = 1 term. I would like to emphasize that the main reason for
propagating the non-smoothed estimate is to be able to handle this sum over k. We write

<§LAL7TLEL> 0,)=>"3.(0,y) (ALT"LZL) (y,-) -

yeVL

First, what happens with the summation over the last layer dy, (y) < L/ (log L)*°? There,
the coarse graining is also of order L/ (log L)lo, and mrX is a smooth kernel, spread
out on scale L, and it is easy to see that

I7.2L (2,7) — T35 (x4 e, )| < const x L1 (3.9)
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Therefore, as the sum over the gy, (0,y) over this last layer is of order 1, one gets deter-
ministically that this part gives only a contribution of order (log L)_10 , which is below
what we are shooting for. So this is harmless. Actually the whole summation over
the boundary region dy, (y) < 2L/ (log L)% is harmless: A bit deeper inside, the coarse
graining my be worse than L/ (log L) ; so that we can not argue as crudely, but there
we wpX; = prmr2r and use that pLAL is only of order (log L)~ 9 , by the induction
assumption, and we gain an additional (log L)~ 3 from The summatlon of the
Green’s function in {dL () < L/(log L)3} is only a factor log L, so we see the whole
boundary region is harmless. Therefore, there remains the y-summation in the bulk
dy, (y) > 2L/ (log L)®. There we chop this bulk into subboxes of side-length L/ (log L) .
There are (log L)3d such subboxes. Then we split up things into summation over y in
these subboxes. These parts are not completely independent through some overlapping
problems, but they are nearly so, and essentially one can handle them as if they were
independent, and then apply some exponential inequality, like Hoeffding’s inequality,
which together with the estimates on ¢y, and the smoothness of 7%, = prmrYr, using
again that Appy is of order (log L)f9 does the job of proving that
1

P <HZyGBulk g (0,9) (ALWLEL) (y,-) war > 10(10gL)9> = 210 exp [ (log L)Q] .

There is however a crucial issue here, namely that for applying the exponential
estimates, we have to center the random part, namely, we have to subtract

> a0y (EALWLEL> (:°) -

yeVL

Now, it is crucial that the symmetry assumption we have transfers to the symmetry of
EA L, at least in the bulk, and as 7y, (z,y) is harmonic in the first variable, this leads to
a cancellation below the level we are shooting for.

The point is that if one gives up the symmetry assumption on the distribution of
the random environment, then one has to take care precisely of expressions of the type
EA L, i.e. of the annealed exit distributions, simultaneously with the quenched exit
distributions. This looks being quite delicate, and has not been done.

The next thlng to do is to estimate the other part in . Any of the other parts
contain a factor Ap twice. Look for instance at

dApgApTLEL.
We consider §Apr .Y, (x,-), which for each z is by the above estimate < m up
to a probability of order % exp [— (log L)ﬂ , so that there is any x € V; where this is

violated has probability at most of order

Ld

5g &XP [ (log L)Q} < %exp [— (log L)z} .

22



gAﬁ can be estimated deterministically:

ZQ (0,y) < const x (log L)%, (3.10)
y

and as we have that Ap is in total variation of order (log L)_g, we are clearly on the
good side, and in this way we can handle easily the rest of the perturbation expansion,
and in this way get , and is somewhat similar.

Now we have to discuss how to handle the possible one bad region. This region is of
size at maximum L/ (log L)3. We write down the perturbation expansion, by splitting
it into the various possibilities of summations where in the A (x,-) parts, the x are
in the bad regions or are not. If there is no summation in over the bad part, then the
contribution is the same as in the “goodified” environment, and we know how it behaves.
We argue now, that we don’t have to consider “multientries” into the bad region. This
is a bid tricky, but essentially gives the means to prove that any additional reentry
to the last one, gives a factor < 1/2; so we can do with one entry into the bad region.
(This needs some additional small manipulation). Therefore, we have to look at typical
contribution of the type

> 91(0,y) (ALWLEL) (Y, -)-

yeBL

The y summation over By, of the Green’s function is harmless: This is at most of order
1, (if the bad region is close to the center). Now, the bad region can be as bad as it is,
the badness is bounded by 2 in total variation. Therefore, a really bad region is getting
improved to a bad region of order degree 3, unless something is going wrong in the good

part, which is happening only with our less than exp [— (log L)Q] probabilities. In the

same way, something bad of level 3 is upgraded to level 2, level 2 is upgraded to level 1,
and level 1 is upgraded to “good” on the next scale. This is the reason for having these
4 levels of badness.

(Of course one might ask why we don’t increase the scale in such a way that “bad”
becomes “good” in one shot. This could be done by increasing scales in steps [ —
l (logl)lo, but the problem would be that in , we would catch something like
(log L)2U on the right hand side, which would kill us there, and then one would have to
do the nonlinear part of the perturbation expansion in a much more sophisticated way.
Therefore, I think that to distinguish several levels of badness is unavoidable).

3.4 Advancing the non-smoothed estimate

For getting information about ||II;, — 7 ||,,, , Wwe cannot stop to refine the coarse graining
close to the boundary, and therefore, we take the original coarse graining scheme. The
drawback is that we have now to take into account multiple bad regions close to the
boundary. For instance, if the scale is L%, a < 1, (meaning that we are about at the
same distance from the boundary), then the probability for V7. (x) to be bad is estimated
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only by exp [— (1—3/13) (log La)z] , S0 it is clear that we cannot exclude multiple bad
boxes if we shoot for an estimate of order exp [— (log L)2] .

We split the boundary region of V7, up into layers A; def {zeVy: 271 <dp(z) <27}
and we chop this layer again into subboxes of about square size, and we distinguish be-
tween “good” and “bad” of these subboxes. The probability that any of these subboxes
in layer j is bad is about exp [— log? (2j )] = exp [— const X j2] , and therefore, the fur-
ther inside we go with the layer, the less frequent are the bad regions inside the layer.
Due to essential independence of these bad regions, we can do a large deviation estimate
which lead to the fact that if X; is the number of bad subboxes in layer A;, and IV; is
the total number of boxes, then

P (Xj > j_3/2Nj, some j with 27 < (losZgIL)?’> < 1—10exp [— (logL)ﬂ .

We write B for the union of these bad subboxes, neglecting for the moment the
possibility that there might still be a bad region in the bulk (which can be incorporated
easily). The part of the perturbation expansion where there are no summands over
A(m, ) with # € B is simply the exit distribution in a goodified environment, and
this can be estimated easily. So there remains the part which has summands, perhaps
multiple ones, in the bad region. In principle, this might become quite complicated
as there may be clusters of bad regions, but we want to avoid any discussion of this
issue, which we can, because we are shooting only for non-smoothed exit distributions.
The point is that we stop the expansion after the first appearance of a summation in
B. Stopping means, that we leave afterwards the original RWRE object. To see this,
we remark that when iterating , we don’t have to iterate it infinitely many times
to arrive at the expansion , but we can stop the expansion whenever we like, for
instance after entering a bad region in the boundary for the first time. The price we
have to pay for this is that we then have to use the RWRE kernels Gy or Il as the last
factor, but II;; is bounded in total variation by 2. Then we resume the part before the first
summation inside B, which again just gives the RWRE Green’s function, evaluated only
in the goodified environment. So the “bad” part of the expansion for ||(II;, — 7 1) (0,-)

gives
2

yeB

Hvar

G%OOdiﬁed (07 y) AI_IL (y’ )

var

Now, we estimate by brute force HAHL (y,-) <2, and get
I

val

S ||G5ete 0. Ay ()| <237 65 (0,),
yeB var yeB

but the goodified RWRE Green’s function, we can estimate G%OOdiﬁed (0,y) using
by const xgr, (0,y), and we are done. (There is some fooling around with the layers very
close to the boundary, but for any fixed J € N, we can choose € small enough that there
is absolutely no bad region in these layers).
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In this way one can advance the estimates of the smoothed estimate and the non-
smoothed estimate. In the induction procedure, the non-smoothed estimate is used also
to advance the estimate of the smoothed estimate, namely to handle the expression
for k > 2. The advancement of the non-smoothed estimate is relying on the smoothed
estimate at many places. However, besides helping to advance the smoothed estimate,
the proof of the advancement of the non-smoothed estimate can be slightly modified
to really prove the statement of the theorem, namely that depending on the deviation
we are shooting for, we can choose an appropriate smoothing, and furthermore, or we
increase the smoothing with L in an arbitrary way, the total variation deviation goes to
0. (Theorem and Remark . This just need a slight modification of the argument:
If we have a fixed smoothing scale (, then one can handle some of the layers close to the
boundary in the way we did in the previous section, because there we use the smoothing
by the scale (, and therefore the bigger ( is the more of the layers we can leave out, so
that in the summation above over y € B, we can restrict to layers deeper inside which
give then less of a contribution. So in fact the whole proof gives that Cond (0, L1) implies
that for L < L; (log L1)2

P (|12 — 71) St 0.9 2 1) < exp [~ (05 1)?]

provided ( (1) is chosen properly.
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