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1 Introduction

We consider Markov chains on the lattice Zd or on subset, which have site depen-
dent transition probabilities. We denote by P a set of probability distributions on
Zd. P will always contain only probabilities on a �xed �nite subset of Zd; for instance�
e 2 Zd : jej = 1

	
; but we will also consider other situations. A �eld of transition prob-

abilities is described by an element ! 2 
 def
= PZd ; ! = (!x)x2Zd : F is the appropriate

product �-�eld on 
: The transition probabilities of our �random walk in random envi-
ronment�(RWRE for short) are then given by

p! (x; x+ y)
def
= !x (y) : (1.1)

We write Px;! for the law of a Markov chain with these transition probabilities, starting
in x: The chain itself is denoted by X0 = x;X1; X2; : : : . We write � for the set of
paths in Zd; equipped with the appropriate �-�eld G: It is evident that P de�nes a
Markovian kernel from Zd � 
 to �; i.e. for any G 2 G; the mapping (x; !)� Px;! (G)
is a measurable mapping.

We will choose ! randomly. This means that we �x a probability measure P on
(
;F) : A special case is when we take the !x as i.i.d. random variables, i.e. when P is
a product measure �Z

d
; � being a probability distribution on P:
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The semi-direct product on 
� � is denoted by P̂x; i.e.

P̂x (A�B)
def
=

Z
A
Px;! (B)P (d!) :

It has become common to call this the annealed law, although it is kind of a misnomer.
In contrast, Px;! is called the quenched law. If x = 0; we usually leave out x in the
notation. One should note that the sequence (Xn) is not a Markov chain under the law
P̂ :

An annealed property of the (Xn) is a property this sequence has under the law P̂ :
In contrast, one speaks of a quenched property if for P-a.a. !; the property holds under
Px;!: For a law of large numbers, there is no di¤erence: If Xn=n! v 2 Rd holds P̂ -a.s.
then this holds P0;!-a.s. for P-a.a. !: However, for convergence in law, e.g. for a CLT,
there is a big di¤erence.

Example 1.1
In the one-dimensional case, of course !x (�1) = 1 � !x (1) ; x 2 Z; and therefore, the
random environment is a sequence of (0; 1)-valued random variables. We will often write

px instead of !x (1) : px is the probability to move from x to the right, and qx
def
= 1� px

is the probability to move to the left.
We also write p = (px)x2Z for the whole sequence. In this case we simply take 


to be (0; 1)Z : A minimal requirement will always be that the sequence is stationary
and ergodic under P : If � is the usual shift operator on 
; � (p)x = px+1; then � is
assumed to be measure preserving and ergodic. As remarked above, we always assume
that 0 < px < 1.

Example 1.2
Although I essentially concentrate on the above model where the transitions are given by
(1.1), one should mention that there is another one, which is simpler in many respects due
to irreversibility. This is the model of random currents. One attaches the randomness
to the bonds, in the form of a random strengths. Denote by Bd; the set of nearest
neighbor bonds (undirected) in Zd: Consider furthermore a law � on the positive real

line, and then the product measure on (R+)B
d

. This measure is again denoted by P: For
! 2 (R+)B

d

; b 2 Bd; the weights are �b (!)
def
= !b: The transition probabilities of the

RWRE are de�ned in the following way. If x 2 Zd; denote by nx the set of bonds one of
the endpoints equal to x: If y is a nearest neighbor of x; then

p! (x; y)
def
=

�fx;yg (!)P
b2nx �b (!)

:

In this case, p! (x; �) and p! (x0; �) are not independent if jx� x0j = 1: The main advan-
tage is that the above transition probabilities satisfy the detailed balance equation

�! (x) p! (x; y) = �! (y) p! (y; x) ; 8x; y
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where
�! (x)

def
=
X
b2nx

�b (!) :

The Example 1.1 does satisfy the detailed balance equation, too, but this is due to the
special nearest neighbor one-dimensional situation. (Every nearest neighbor Markov
chain on a graph without loops satis�es the detailed balance equation). Our models
(1.1) don�t satisfy a detailed balance equation in higher dimensions, and also not in one
dimension if one steps away from the nearest neighbor situation. We will come to these
issues later.

Natural questions to address are laws of large numbers, i.e. does Sn=n converge
P̂ -a.s., to a constant v 2 Rd; and is there a central limit theorem, i.e. is

Xn � nvp
n

asymptotically Gaussian distributed. As remarked above, one has clearly to distinguish
between an annealed and a quenched CLT. The former means that the above expression
is asymptotically normal under P̂ ; but a quenched CLT would mean that for P-a.a. !;
there is a CLT under the measure P0;!: The latter is rather more di¢ cult to establish.
There had been a lot of progress on this question recently, see [1], [12], and the older
paper [4].

For the LLN, a naive guess might be that

lim
n!1

Xn
n
=
X
e

eE (!e) ;

but a moments re�ection reveals that things cannot be as simple. The point is that the
environment acts on the path in a �non-linear�way, so it is clear that

Ê (Xn) 6= n
X
e

eE (!e) ;

in general, except for n = 1; 2:

2 The quasi one-dimensional case

2.1 Transience and recurrence

In the strictly one-dimensional nearest neighbor case of Example 1.1, a classical result
by Solomon is the following:

Theorem 2.1
Assume that the sequence fpxgx2Z is i.i.d. with E (� log px) ; E (� log qx) < 1; and
write

�+
def
= E log

qx
px
:

Then
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a) If �+ > 0 then limt!1Xt = �1; P̂0 almost surely.

b) If �+ < 0 then limt!1Xt =1; P̂0 almost surely.

c) If �+ = 0 then lim supt!1Xt =1; and lim inft!1Xt = �1; P̂0 almost surely.

As a consequence, one sees that �+ = 0 holds if and only if the RWRE is recurrent.
The RWRE on Z with �nite range jumps is already considerably more delicate.

In the independent case, the !x are i.i.d. random variables taking values in the set
of probability measures on f�R; : : : ; Rg ; R some natural number. !x (y) is then the
probability with which the RWRE (under the quenched law) jumps from x to x+ y:

A quantity of crucial importance is the (random) function ha;b (x) ; a < b; x 2 Z;

ha;b (x)
def
= Px;!

�
T[b;1) < T(�1;a]

�
; (2.1)

where TA denotes the �rst entrance time into the set A: Clearly this function satis�es
for a < x < b

ha;b (x) =
X
jyj�R

!x (y)ha;b (x+ y) ;

and boundary conditions h = 1 on [b;1); h = 0 on (�1; a]:
In the nearest neighbor case, one can explicitly solve this equation which is not

possible in the non-nearest-neighbor case. A natural approach is to represent a vector
of ha;b-values of length 2R by a shifted one through0BBBBBBB@

h (x+R)
...
...
...

h (x�R+ 1)

1CCCCCCCA
=

0BBBBBB@
�!x(R�1)

!x(R)
; : : : ; 1�!x(0)

!x(R)
; : : : ; �!x(�R)

!x(R)

1 0 � � � � � � 0

0
. . .

...
...

. . .
...

0 1 0

1CCCCCCA

0BBBBBBB@

h (x+R� 1)
...
...
...

h (x�R)

1CCCCCCCA
;

and match the boundary conditions. This is the approach of Key [?] who generalized
the Solomon result to the non-nearest neighbor case. The recurrence and transience are
then expressed in terms of the middle Lyapunov-exponent of the products of the above
random matrices. The approach has recently been taken up by Julien Brémont [?].

In two papers with Ilya Goldsheid [2][3], we developed a somewhat di¤erent approach
in a slightly more general setup.

We consider a RWRE in a strip Z�f1; : : : ;mg : We call the subset fkg� f1; : : : ;mg
the k-th layer, and write it sometimes as Lay (k) : Transitions are possible from Lay (k)
to Lay (k + 1) and to Lay (k � 1) ; but also inside the same layer. The transitions proba-
bilities are therefore described by a sequence of triplets (Pk; Qk; Rk) of positive matrices,
where Pk describes the transition probabilities from layer k to layer k+1; Qk from layer
k to layer k � 1; and Rk the transitions inside layer k: For instance

Pk (i; j) = P (Xt+1 = (k + 1; j)jXt = (k; i)) ;
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and similarly for the other matrices. If the triplets are chosen randomly, we have a
RWRE on the strip with transitions possible only to the neighbor layers.

It is clear that a RWRE on Z with possible jumps of maximal size R can be described
in the above setup, simply by chopping Z into pieces

: : : ; f�R+ 1; : : : ; 0g f1; : : : ; Rg ; fR+ 1; : : : ; 2Rg ; : : : ;

and declaring these piece to be the layers. Due to the restrictions of the jumps, there
are then only jumps to the neighbor layers possible.

We will write the RWRE on the strip by Xt = (�t; �t) ; where � is the component in
Z; and � the component in f1; : : : ;mg :

Our basic assumptions for the �rst result are

� The sequence f(Pk; Qk; Rk)gk2Z is stationary and ergodic.

� An irreducibility assumption I don�t spell out explicitly. For instance, the require-
ment that all matrix elements are positive, almost surely, is more than enough.

� Two moment assumption:

E log (1� kRn +Qnk)�1 < 1;
E log (1� kRn + Pnk)�1 < 1:

Here the matrix norm is

kAk def= max
i

X
j

jA (i; j)j :

We will also use the maximum norm in Rm : kxk def= maxi jxij :
Crucial in our approach are three sequences ofm�m-matrices 'n;  n; and An; n 2 Z:
If a < n; we de�ne

'a;n (i; j) = P(n�1;i)
�
�Tn = j; Tn < Ta

�
;

where Tn is the �rst hitting time of layer n: Clearly, these matrices are substochastic,
and pointwise non-decreasing or a #. So we can de�ne

'n (i; j)
def
= lim

a!�1
'a;n (i; j) :

These matrices are also substochastic. By the Markov property, they satisfy the equa-
tions

'n+1 = Pn +Rn'n+1 +Qn'n'n+1;

'n+1 = [I �Rn �Qn'n]�1 Pn:
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We next de�ne a sequence of stochastic matrices  n which dominate 'n:  n = 'n
provided 'n is already stochastic. We de�ne �rst the vector

yn+1 (j)
def
= lim

a!�1
P(a;i)

�
�Tn+1 = j

���Tn+1 < Sa

�
:

Here Sa is the �rst return time to layer a; i.e. the �rst hitting time after the �rst step.
If Tn+1 < Sa; and the chain starts in Lay (a) ; then the chain moves to the right of a:
The limit exists, and is independent of i: This of course needs an argument which I don�t
give here in detail. Conditioned on fTn+1 < Sag ; the chain is an inhomogeneous Markov
chain, and if we start far to the left, the chain �forgets�the starting point. This comes
from the irreducibility assumption. We also de�ne

�n (i)
def
=
X
j

'n+1 (i; j) ;

which is the probability that when starting in point i in Lay (n) ; the chain escapes to
�1 before reaching Lay (n+ 1) : Then we set

 n+1 (i; j)
def
= 'n+1 (i; j) + (1� �n (i)) yn+1 (j) ;

or in short
 n = 'n + (1� �n)
 yn+1:

(1� �n (i)) yn+1 (j) is the probability, starting in i in Lay (n) that the chain �rst escapes
to �1 before reaching Lay (n+ 1) ; and �after reaching �1�, it hits Lay (n+ 1) at j;
when hitting it the �rst time. Of course, in a proper formulation, one has to replace �1
by a and let a! �1:

Lemma 2.2
a) The matrices  n are stochastic matrices

b) They satisfy the equation

 n+1 = Pn +Rn n+1 +Qn n n+1:

c) f ng is the only sequence of stochastic matrices which satis�es this equation.

d) The sequence (Pn; Qn; Rn; 'n;  n) is stationary and ergodic.

Proof. a) is evident. We give a sketch of the proof of b), assuming for simplicity,
that Rn = 0:

We already know that f'ng satis�es this equation. Writing �n+1
def
= (1� �n)
 yn+1;

we have

 n+1 = Pn +Qn'n'n+1 + �n+1

= Pn +Qn ( n � �n)
�
 n+1 � �n+1

�
+ �n+1

= Pn +Qn n n+1 + �n+1

�Qn�n
�
 n+1 � �n+1

�
�Qn ( n � �n)�n+1 �Qn�n�n+1:
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We therefore have to show that

�n+1 = Qn�n
�
 n+1 � �n+1

�
+Qn ( n � �n)�n+1 +Qn�n�n+1

= Qn�n'n+1 +Qn'n�n+1 +Qn�n�n+1:

Now, �n+1 describes the transition for a path �escaping to �1�before reaching n+1: Of
course, strictly speaking, one considers the event that it reaches a before n+1; and then
conditions that it goes back, and one let a! �1: Anyway, if it reaches �1 before n+1;
it certainly moves to the left when starting in layer n: These transitions are described
by Qn: �n'n+1 then describes the transitions (starting in layer n � 1) under the event
fT�1 < Tng\ fTn+1 � �Tn < T�1 � �Tng ; where �Tn means the shift to the time layer n
is reached, 'n�n+1 describes the transitions under the event fTn < T�1g ; and �n�n+1
under the event fT�1 < Tng \ fTn+1 � �Tn > T�1 � �Tng (everything starting after the
transition to layer n� 1 ): This proves (slightly sketchily) the above relations.

For the proof of c), and d) we refer to [2].
The last sequence of matrices we need is

An
def
= [I �Rn �Qn n]�1Qn:

Remark that in the nearest neighbor one-dimensional case one of course has just
 n = 1; and An = qn=pn:By Kingmans subadditive ergodic theorem

�+ = lim
n!1

1

n
log kAnAn�1 : : : A1k (2.2)

exists almost surely, and is non-random. The following theorem describes the recurrence-
transience behavior of the RWRE in terms of �+. It is an extension of the Solomon�s
Theorem 2.1

Theorem 2.3
a) If �+ > 0; then limt!1 � (t) = �1 almost surely

b) If �+ < 0; then limt!1 � (t) =1 almost surely

c) If �+ = 0; then lim supt!1 � (t) =1, and lim inft!1 S (t) =1; almost surely.

The theorem also states that the RWRE is almost surely recurrent, if and only if
�+ = 0:

It is important that there is a symmetry between �movement to the right� and
�movement to the left�. Precisely, given the stationary sequence f(Pn; Qn; Rn)gn2Z ; we
de�ne the sequence

n�
P̂n; Q̂n; R̂n

�o
n2Z

by P̂n
def
= Q�n; Q̂n

def
= P�n; R̂n

def
= R�n: This

de�nes a Lyapunov exponent �� def
= �+

�n�
P̂n; Q̂n; R̂n

�o�
:

Lemma 2.4
�+ + �� = 0:
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The proof is not entirely trivial, due to the fact that �+ has been introduced in an
asymmetric way. I am not giving the details of the proof, and refer to [2] for details.
The proof is done by relating our matrices to the stationary distribution of the chain.
This stationary distribution is invariant under re�ection of the movement.

Corollary 2.5
If (Pn; Qn; Rn) is i.i.d. and identical in law to (Qn; Pn; Rn) ; then �+ = 0; and therefore
the walk is recurrent.

This result has also been proved by Mike Keane, and Silke Rolles [13], using Key�s
approach.

There is an easily proved dichotomy. Either one has

A) 'n is stochastic for all n; almost surely, in which case it follows

lim sup
t!1

�t =1; a:s:

or

B) X
j

'n (i; j) < 1

holds for all i 2 f1; : : : ;mg ; and all n; almost surely, in which case one has

lim
t!1

�t = �1:

The dichotomy follows easily from ergodicity, and irreducibility.
Proof of Theorem 2.3.
By Lemma 2.4, a) is equivalent to b). Furthermore, c) follows easily from a), b) and

the above dichotomy.
We introduce for n > a :

�a;n
def
=  n � 'a;n:

Then
�a;n+1 = An�a;n'a;n+1:

We can iterate that. Because 'a;a+1 = 0; we get on the one hand

�a;n+1 = AnAn�1 � � � � �Aa+1 a+1'a;a+2 � � � � � 'n;a; (2.3)

and on the other, by letting a! �1 �rst, putting �n
def
=  n � 'n; we get for n > m

�n+1 = AnAn�1 � � � � �Am�m'm+1 � � � � � 'n: (2.4)

We prove �rst �=)�in b). We therefore assume that �+ < 0: We use (2.3) with a
�xed, e.g. a = 0: This then implies that for n large, '0;n is exponentially close to the
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stochastic matrix  n: However, this implies that �t converges to1; at least with positive
probability. But this implies by our dichotomy, that it converges to 1 with probability
1:

We next prove �(=�in a), and here we apply (2.4). Assuming that limt!1 �t = �1
implies that we are in situation B). We apply (2.4) to m = 1: As �1 is strictly positive,
we see that

�+ = � lim
n!1

log k'2 � � � � � 'nk > 0;

because the 'i form a stationary sequence of strictly substochastic matrices.

Remark 2.6
One dimensional RWREs can have the interesting property that Xt ! 1 holds almost
surely, but Xt=t! 0: In fact, if E (qx=px) � 1 and E (px=qx) � 1 then

lim
t!1

Xt
t
= 0; P̂�a:s:

even if �+ 6= 0 (see e.g. [18]). Similar phenomena appear in the strip case, too, see the
recent paper by Goldsheid [7]. I will not discuss this here.

2.2 The Sinai-behavior: Small displacement in the recurrent case

In the strictly one-dimensional i.i.d. nearest-neighbor case with �+ = E log (q=p) = 0,
Sinai.[14] proved the remarkable result that the displacement of the RWRE after time t
is only of order (log t)2. This is based on the fact that the functions ha;b de�ned in (2.1)
can be expressed in terms of the random walk

�k
def
=

kX
j=1

log
qj
pj

(extended properly to a two-sided walk with �0 = 0). For instance, if a < k < b; then

Pk;! (Ta < Tb) � const�
bX
j=k

exp
�
�j � �a

�
:

The random walk f�kg has on k-intervals of size m �uctuations of size
p
m: From

standard �uctuation properties of a random walk, one therefore has �valleys�of depth
const�

p
m on k-intervals of size m: Using the above type of estimates, one can derive

that it takes exp [const�
p
m] time steps for the RWRE to escape from such a valley.

From that one sees that the RWRE typically moves away from starting point of order m;
after a time of order exp [const�

p
m] : In other words, after time t; one has moved away

of order (log t)2 : There is a more precise formulation given below for our strip RWRE
which states that the RWRE in fact stays most of the time close to the �bottom� of
properly chosen valleys.
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As this has been discussed in many survey articles (see e.g. [18]), I don�t spell out the
details here, and focus on the methods which are needed in the strip case (or non-nearest
neighbor case). For the non-nearest neighbor one-dimensional case, there is also a paper
by Letchikov [11] on the topic.

We will always assume here that the sequence f(Pn; Qn; Rn)gn2Z is i.i.d., and we
write � for its law. The rôle of the above random walk in the strip case is played by

�k
def
=

8<:
log kAk � � � � �A1k ; k � 1
0 k = 0
� log kA0 � � � � �Ak+1k k � �1

:

In contrast to the strictly neighbor one-dimensional situation, the f�kg is not a sum of
independent random variables, but it can be represented as a functional of an ergodic
Markov chain.

Let J def
= f(P;Q;R) : P;Q;R non� negative; P +Q+R stochasticg ; and

J"
def
=
n
(P;Q;R) 2 J : (I �R)�1 P; (I �R)�1Q � "; pointwise; 9l 2 N :




Rl


 � 1� "o :
We will assume that our transition probabilities are in J" for some " > 0: This is

much stronger than really needed, but keeps somewhat uninteresting technical issues
out. It is evident that if (P;Q;R) 2 J"; then there is a unique probability � = �(P;Q;R)
on f1; : : : ;mg satisfying � (P +Q+R) = �: We set

Jal
def
=
�
(P;Q;R) 2 J" : �(P;Q;R) (P �Q)1 = 0

	
:

Remark 2.7
If (P;Q;R) 2 J"; we can consider the Markov chain on the strip which has these as
�xed transition probabilities. Evidently, this Markov chain is recurrent if and only if
(P;Q;R) 2 Jal: On the other hand, we can characterize recurrence also in terms of
�+(P;Q;R) which is de�ned as (2.2), but with this �xed �environment�. Recurrence is then

also characterized by �+(P;Q;R) = 0: Therefore one has

(P;Q;R) 2 Jal () �+(P;Q;R) = 0:

Theorem 2.8
Assume that the (Pn; Qn; Rn) are i.i.d. with law �; and

(a) �+ = 0;

(b) supp (�) � J" for some " > 0; and

(c) supp (�) * Jal:

Then there exists a sequence fbtgt2N of random variables, converging in distribution,
such that for any "0 > 0; one has

lim
t!1

P
��

! : P0;!

����� �t

(log t)2
� bt

���� � "0
�
� 1� "0

��
= 1: (2.5)
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The sequence fbtg is de�ned in the same way as in the standard one-dimensional
RWRE (see [18]), but in terms of our random walk f�kg : bt is described as the �bottom
place�of properly chosen valleys of depth 1 in the rescaled random walk

n
�[k log2 t]

.
log t

o
:

For details of the construction, see [18]. The limit distribution of bt has been derived by
Kesten [9]. The proof of the theorem runs somewhat parallel to the proof in the classical
case, provided one proves a functional CLT for f�kg : There are some complications as
the estimates are typically not quite as sharp as in the classical case, but the changes
are mainly technical. I will not go into this here, and refer the reader to [3] for details. I
will however give some explanations how to derive the CLT, and how the condition (c)
appears. This condition is not necessary for the Sinai-type behavior, but curiously it is
so for the non-nearest neighbor Z-case which can be stated as follows.

Consider a sequence fpkgk2Z of i.i.d. random probability distributions on f�R; : : : ; Rg ;
describing the transitions of a RWRE fXtg on Z; pk (i) being the probability of changing
from k to k + i: Set eJal def= n

p :
X

k
kp (k) = 0

o
:

Theorem 2.9
Assume that the pk are i.i.d., that there exists " > 0 such that pk (1) ; pk (�1) ; pk (R) ;
pk (�R) � "; almost surely, and that the support of the law of the pk is not contained
in eJal: Then one has Sinai-type behavior, i.e. fXtg satis�es (2.5).

In that case, the condition on the support is actually necessary, as one has the
following

Theorem 2.10
Assume the same as above, except that the support of the pk is contained in eJal: Then
there exists �2 > 0 such that for almost all !; one has

lim
t!1

P0;!

�
t�1=2Xt � x

�
= �

�
x; 0; �2

�
; 8x 2 R;

where �
�
�; a; �2

�
denotes the distribution function of the Gaussian distribution with

mean a and variance �2:

This result is somewhat similar to a result by Lawler [10], and can be proved by an
adaptation of his methods. In fact, of the support of the law of the pk is in eJal; then the
Markov chain is a martingale, and one can apply the martingale central limit theorem,
but there remains the di¢ culty to see that the variance �2 is positive. I will not discuss
this here, and refer to [3].

The Theorem 2.9 is an immediate consequence of Theorem 2.8.
I discuss now, how to derive the necessary CLT for f�kg which leads to Theorem 2.8.

One uses the machinery of random transformations. Consider the space M def
= 	 �X;

where 	 is the space of stochastic matrices, and X is the space of non-negative vectors
x with kxk = 1: (k�k was the maximum norm). Then g = (P;Q;R) 2 J" operates on M
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by

g: ( ; x)
def
=
�
(I �R�Q )�1 P;Ax= kAxk

�
;

where A def
= (I �R�Q )�1Q:

Starting with ( a; xa) ; and an i.i.d. sequence fgng ; one de�nes recursively for n � a :�
 n+1; xn+1

� def
= gn+1: ( n; xn) : Letting a! �1; one then obtains a stationary sequence

f(gn;  n; xn)gn2Z : The distribution of (gn;  n; xn) (for �xed n) is �
 �; where � is the
distribution of the gn; and � is the stationary distribution onM: The above sequence is a
stationary ergodic Markov chain with a transition operator A; operating on (continuous)
functions F on J" �M by

AF (g; ( ; x)) def=
Z
F
�
g0; g: ( ; x)

�
�
�
dg0
�
:

The random variables of interest, namely �k can then be written (also in the case of
�+ 6= 0) as

�n = log kAn � � � � �A1k � n�+

=

nX
k=1

�
log kAkxkk � �+

�
+O (1) ;

for n � 1; with a natural de�nition also for n � 0: From the standard CLT for functionals
of ergodic Markov chains one then gets the desired statement thatn

�[nt]=�
p
n
o
t2R

converges weakly as n ! 1 to a (two-sided) Brownian motion, provided the variance
�2 > 0: This variance is given by

�2 =

Z
J"�M

h
AF 2 � (AF )2

i
d (�
 �) ;

where F : J" �M ! R is the unique (continuous) solution of the equation

F (g; ( ; x))�AF (g; ( ; x)) = log



(I �R�Q )�1Qx


� �+: (2.6)

If �2 > 0; then we get the functional CLT for the sequence f�kg which leads to the
Sinai-type behavior. We prove now that our assumptions imply that �2 > 0:

Lemma 2.11
If �+ = 0; and �2 = 0 then supp (�) � Jal:

Proof. We �rst observe that if g = (P;Q;R) 2 J" is �xed, then there exists a unique
zg =

�
 g; xg

�
2 M with g:zg = zg: This corresponds to just taking �xed transition
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probabilities given by (P;Q;R) (not depending on n).
�
 g; xg

�
is obtained by applying

the constant operation N times, and let N !1: There exists �+g 2 R; such that�
I �R�Q g

��1
Qxg = e

�+g xg;

where �+g is the number introduced in Remark 2.7. Therefore, �
+
g = 0 holds if and only

if g 2 Jal: The statement of the lemma therefore says that if �+ = 0 and �2 = 0; then
�+g = 0 is true for all g 2 supp (�) :

Now,

�2 =

Z �
F
�
g0; g:z

�
�
Z
F (eg; g:z)� (deg)�2 � �dg0� ;

z = ( ; x) ; where F is the solution of (2.6). It is readily checked that the solution can
be chosen to be continuous. Therefore, if �2 = 0; then F (g; z) does not depend on the
�rst coordinate, i.e. F (g; z) = F (z) for some continuous function F ; for all (g; z) in the
support of �
 �: From this it follows that

log



(I �R�Q )�1Qx


 = F (z)� F (g:z) ;

g = (P;Q;R) ; z = ( ; x) : In particular,

�+g = log



�I �R�Q g��1Qxg


 = 0;

which is the required conclusion.

3 Exit distributions in dimensions � 3
We switch now to the nearest-neighbor RWRE in Zd: For x 2 Zd; !x is concentrated on�
e 2 Zd : jej = 1

	
: We use e exclusively for a nearest neighbor point to 0 in Zd: We also

assume a smallness assumption of the disorder, i.e. we require that P concentrates on
transition probabilities !x (e) ; satisfying����!x (e)� 1

2d

���� � ":

Furthermore, of course, the !x are chosen i.i.d. We denote by � the distribution of !x :

Condition 3.1
1. � is invariant under lattice isometries, i.e. under orthogonal transformations which
leave the lattice Zd invariant.

2. d � 3

3. " > 0 is small.
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If U �� Zd; x 2 U; we denote the exit distribution of the ordinary random walk by
�U (x; z) ; z 2 @U; the outer boundary of U: For the RWRE, we write �U;! (x; z) : The
aim is to show that the RWRE exit distribution is close �U .

The basis is a perturbation argument. We represent the RWRE through the ordinary
one by a standard perturbation expansion for the Green�s function. We write gU for the
Green�s function of the ordinary RW with Dirichlet boundary, i.e.

gU
def
=

1X
n=0

(1Up)
n ;

where p (x; x+ e) = (2d)�1 ; and (1Up) (x; y) = 1U (x) p (x; y) : For two function F;G :
Zd � Zd ! R; we write FG for the kernel

(FG) (x; y)
def
=
X
z

F (x; z)G (z; y) ;

if this is de�ned. Fn is just the n-fold product, de�ned in this way, and F 0 (x; y) def=
�x;y: For x 2 U; z 2 @U; we have gU (x; z) = �U (x; z) : We also write GU;! for the
corresponding kernel for the RWRE. Put

�U;! (x; x+ e)
def
= 1U (x)

�
!x (e)�

1

2d

�
:

Then
GU;! = gU + gU�U;!GU;!: (3.1)

We can iterate this, and obtain

GU =

1X
n=0

(gU�)
n gU : (3.2)

(Convergence of such expansions will never be a problem in our setup). In particular, if
x 2 U; z 2 @U

�U (x; z) =

 1X
n=0

(gU�)
n �U

!
(x; z) :

I present here an outline of the approach developed together with Ofer Zeitouni [5].
We have not been the �rst to investigate this problem. A classical paper is the one by
Bricmont and Kupiainen [6]. A CLT for di¤usions in random environments is given in
[17].

3.1 Why is the disorder contracting in d � 3?
We apply the perturbation expansion to the situation where " (i.e. the disorder) is small
and U is a large centered box of side length L; call it UL, but we will have to see in
which relation with " they can be.
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The crucial point is the behavior of the linear term with n = 1: For z 2 @UL; and
starting point 0; we have

�(0; z) = � (0; z) +
X
y2U;e

g (0; y)� (y; y + e)� (y + e; z) +
1X
n=2

NLn (0; z) ;

where NLn denotes the non-linear terms. The �rst important fact one observes is that
in the linear summand, one has

P
e�(y; y + e) = 0; and therefore, one can rewrite it asX

y2U;e
g (0; y)� (y; y + e) [� (y + e; z)� � (y; z)] :

The summation close to the boundary needs some care, but as this issue becomes much
more delicate later anyway, I consider here only the summation over y in the bulk,
say in UL=2: Then � (y; z) is of order L�d+1; and � (y + e; z) � � (y; z) is of order L�d:
(These estimates can be found in Lawler�s green random walk book). The only place
where randomness enters into this summand is in � and evidently from the symmetry
assumption, one has E� = 0; E�2 � "2: Therefore

var

0@ X
y2UL=2;e

g (0; y)� (y; y + e) [� (y + e; z)� � (y; z)]

1A � const�L�2d"2
X

y2UL=2

g (0; y)2 :

In d � 3; we can estimate the Green�s function on UL by the Green�s function on the
in�nite lattice which is bounded by const� (1 + jyj)�d+2 : Therefore

X
y2UL=2

g (0; y)2 � const�

8<:
1 d � 5

logL d = 4
L d = 3

:

For the contribution of this part to the exit distribution, we therefore get in the �worst
case�d = 3

E
X
z2@UL

����Xy2UL=2;e
g (0; y)� (y; y + e) [� (y + e; z)� � (y; z)]

���� � const�"L�1=2:
By using an exponential inequality, e.g. Hoe¤ding�s inequality, then one easily gets
good exponential bounds. We will come to this later, but one sees that the disorder
is contracting for d � 3; when one looks only at the linear term, and if one neglects
boundary e¤ects. If one does the calculation carefully, one gets that the disorder is also
borderline contracting in d = 21.

However, the nonlinear terms start to make trouble for �xed " and large L: First
of all, there is a complicated dependency structure emerging. One can try to estimate
the non-linear terms very crudely, by estimating uniformly in !: Roughly, estimating

1A paper treating the two-dimensional case is in preparation (with Ofer Zeitouni).
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(gU�)
n �U ; taking only the contribution from the bulk, one gets (for d = 3), an L2

from every gU ; then an " from the �; and �nally an L�1 from �U (after summing over
the boundary, but taking into account the gain by one derivative). Therefore a crude
bound for the total variation is given by

�
L2"
�n
L�1: In order to sum that, one has the

requirement that L2" < 1: Of course, there is no possibility to argue in this crude way,
if " is �xed and L become large.

The basic idea is to try to safe this kind of arguments by doing a multiscale argument.
This means that one does not jump from scale 1 immediately to scale L; but one jumps
so in a number of intermediate steps, for which one can argue somewhat crudely when
jumping from one scale to the next.

3.2 The exact setting

The main scheme is to describe an induction scheme how to transfer information about
exit distributions one has on scales � l to information on a bigger scale L (or better on
scales � L): One essentially takes

L
def
= l (log l)3 :

I will be more precise about this later. The reason one is increasing the scale faster than
exponential is that this enables one to treat �bad�regions very crudely. The �badness�
is washed out quickly just by the fast increase of the scale, as we will see.

Instead of boxes, we take (lattice) Euclidean balls

VL
def
=
n
x 2 Zd : jxj � L

o
;

where jxj is the Euclidean norm. (L here is not necessarily an integer). We also write
VL (x)

def
= x + VL: (The reason that we didn�t work with square boxes is that there are

some �corner problems�which create troubles in the induction step. For the �nal result,
this does not play any rôle, but for the induction procedure, we found that square boxes
are cumbersome to handle).

For x 2 VL; z 2 @VL; we write �L (x; z) for the probability that ordinary random
walk starting in x exits VL at z; and �L;! (x; z) for the corresponding quantity of the
RWRE.

We now want to represent the exit distribution for the large scale L through exit
distributions on the smaller scale, and then use an averaging argument for the linear
term in the perturbation expansion, and crude estimates in the non-linear terms. There
are a number of di¢ culties.

1. We found that we should always work with exits from centered balls. The advan-
tage is that the distribution (under P) of the exit distribution inherits trivially the
symmetry properties of the original RWRE transition probabilities.

2. Close to the boundary of the big L-box, one has to re�ne the scale of the smaller
boxes. This creates a number of technical di¢ culties.

16



3. One of the main di¢ culties: It is clear that the disorder is not contracting when
measured in total variation. This is (hopefully) coming from random e¤ects close
to the boundary. The main result is therefore a result on the contracting of the
disorder when looking at

(�L;! � �L) �L
where �L is a certain smoothing kernel.

4. With P-probability 1 there are arbitrary large �bad�regions in Zd; and one has to
show that they don�t have a big in�uence (which they do for d = 1).

The smoothing kernel is de�ned in a somewhat complicated way. The motivation for
this choice is that it is the �right one�for the induction procedure, as we will see. Here
is the de�nition:

�L (0; z)
def
=

Z 2

1
 (t)�tL (0; z) dt;

where  : R! R+ is a smooth probability density with support on [1; 2] : �L (x; z)
def
=

�L (0; z � x) : The reason for making this averaging over the radius is simply to have a
kernel which is smooth enough. For instance, clearly

sup
x;z
�L (x; z) � const�L�d;

and with a bit of work

sup
x;z;e

j�L (x+ e; z)� �L (x+ e; z)j � const�L�d�1:

The main result we have is the following

Theorem 3.2
There exists "0 > 0 such that for " � "0; the following is true: For any � > 0; there
exists a smoothing radius � (�) such that

lim
L!1

P
�

(�L � �L) ��(�) (0; �)

var � �

�
= 0:

The theorem states that if we want to have an estimate � for the deviation in total
variation; then one has to apply a certain �xed smoothing on a scale � (�) : The form
of the smoothing kernel is actually not important in the �nal result. The special form
above is only useful in the induction procedure.

Remark 3.3
If one is ready to increase the smoothing scale, then the di¤erence goes to 0 : If �L !1;
then there is a sequence �L ! 0 such that

lim
L!1

P
�

(�L � �L) ��L (0; �)

var � �L

�
= 0:
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The main induction procedure, we apply, makes only statement about �globally
smoothed�exit distributions, and �non-smoothed�ones. I describe this now precisely:

We call the ball VL (x) good provided

k(�L � �L) �L (x; �)kvar � (logL)
�9 ; (3.3)

and
k(�L � �L) (x; �)kvar � �: (3.4)

(This depends also on a parameter � > 0).
It however turns out that the appearance of �bad� regions makes it necessary to

distinguish between di¤erent degrees of badness, but fortunately, only four levels are
needed. We call a box VL (x) �bad on level i�, i � 3; provided

(logL)�9+9(i�1)=4 < k(�L � �L) �L (x; �)kvar � (logL)
��9+9i=4 ;

and still (3.4) is satis�ed. Balls which are neither good, nor bad on any of the levels
1; 2; 3, are called �really bad�, or bad on level 4:

Our main inductive result is the following: For � > 0; K 2 N; we denote by
Cond (�;K) the condition that for all L � K

P (VL (0) is bad on level i) � exp
h
� (1� (4� i) =13) (logL)2

i
; i = 1; 2; 3; 4:

Proposition 3.4
There exists �0 > 0 such that for 0 < � � �0; there exist "0 (�) ; and L0 2 N; such that
if " � "0; L1 � L0; then

Cond (�; L1) =) Cond
�
�; L1 (logL1)

2
�
:

We take here only L1 (logL1)
2 on the right hand side, the point being that if L �

L1 (logL1)
2 ; then L= (logL)3 � L1: In the above formulation, I am actually cheating

slightly. One has in fact to include still a slightly more complicated version regarding the
smoothing scheme. This is due to some additional complications close to the boundary,
but it is a very minor issue, and I leave a discussion of it out.

It is trivial to start the recursion scheme by choosing " small enough. The above
proposition at �rst sight gives only results about globally smoothed exit distributions
(and non-smoothed ones, but the di¤erences between RWRE and ordinary RW does
not go to 0). The proof of the above proposition however derives from Cond (�; L1)
properties about exits on the larger scale with smoothings on intermediate scale, too,
but for the advancement of the induction, only the globally smoothed, and the non-
smoothed information is needed.

We have to �x transition kernels for the movement inside a �big� ball VL: The
movement is by exit distributions on smaller centered balls, but we also perform an
additional randomization of the radius. We also have to re�ne the jumping radius close
to the boundary. We call this procedure the �coarse graining scheme�. The coarse
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graining scheme is described by �xing for every x 2 VL the relevant radius �L (x) :
This is always chosen such that in such a way that V2�(x) (x) � VL; except possibly

for the �very last layer�. Let dL (x)
def
= dist (x; @VL) : If dL (x) � 2L= (logL)3 ; then

�L (x)
def
= 
L= (logL)3 ; where 
 > 0 is still a small parameter, we did not specify. 1=10

is probably �ne. For dL (x) < 2L= (logL)
3 the coarse graining radius starts to shrink. It

shrinks linearly in the region dL (x) < L= (logL)3 ; where we put �L (x)
def
= 
dL (x) : In the

region L= (logL)3 � dL (x) < 2L= (logL)
3 ; we make a smooth transition between these

behaviors. Our basic transition kernel for the ordinary RW is p̂L (x; �)
def
= ��L(x) (x; �) :

(Remark that if �L (x) < 1=2; then this is just the ordinary nearest neighbor transition).
It is also evident that the exit distribution from VL for a Markov chain with these
transition probabilities is just the ordinary RW exit distribution �L: We do the same
coarse graining for the RWRE, and write P̂L;! (x; �) for these kernels.

This is the coarse-graining scheme we use for the �non-smoothed�estimate. For the
other one, we make a small modi�cation: We stop the re�nement of the coarse-graining
for points dL (x) � L= (logL)10 : For such points, we just take the exit distribution from
V10L=(logL)10 (x)\VL; also without averaging over the radius. I don�t distinguish the two
coarse-graining schemes in the notation, but will tell always which one to take. In this

case we write �L (x)
def
= 10L= (logL)10 :

We write ĝL for the Green�s function of p̂L;

ĝL
def
=

1X
n=0

(1VL p̂L)
n ;

and �̂L;! for the di¤erence P̂L;! � p̂L: Then the perturbation expansion gives

�L:! � �L = ĝL�̂L;!�L + ĝL�̂L;!ĝL�̂L;!�L + : : : (3.5)

The reason for choosing the smoothing kernel in the particular way we did is that

ĝL = I + 1VL p̂LĝL:

Therefore, we split

�̂L;!ĝL = �̂L;! +
�
�̂L;!1VL p̂L

�
ĝL;

and then we use our induction assumption on the smoothed version in the second sum-
mand, and the non-smoothed one in the �rst summand. The above expansion is then

�L:! � �L =
1X
k=1

ĝL�̂
k
L;!�L +

1X
k1;k2=1

ĝL�̂
k1
L;!1VL p̂LĝL�̂

k2
L;!�L + : : :

and the philosophy is to estimate



�̂kL;!1VL p̂L




var
� �k�1 (log �)�9 in good regions.

One of the main issues are to have good estimates on ĝL. Essentially it should be
like the Green�s function of the ordinary nearest neighbor RW with a scaling due to
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the spreading. The ORW Green�s function should be like the Brownian motion Green�s
function, which is explicitly known in a ball of radius L

gBML (x; y) =
1

d (2� d)!d

 
jx� yj2�d �

���� Ljxjx� jxjL y

����2�d
!
;

where !d is the volume of the unit ball. The ordinary RW Green�s function gORWL is
then essentially the same except for a cuto¤ of the singularities. For discussing ĝL; one
has to use the appropriate �coarse-graining�scale �L (x).

Pseudotheorem
For all what is necessary, ĝL (x; y) behaves for y 6= x like �L (y)

�d gORWL (x; y) ; and also
the (discrete) derivatives behave like the derivatives of �L (y)

�d gORWL (x; y) :

We didn�t prove such a theorem, which is certainly not true in this strong form,
but whenever we needed something, we proved an appropriate statement ad hoc. For
instance, an easy (and evident) property is that the expected total time spent by our
coarse grained walk in a region fx 2 VL : t � dL (x) � 2tg for t � L= (logL)3 is of order
1; uniformly in t; and uniform in the starting point. Therefore, the expected time, the

walk spends in
n
dL (x) � L= (logL)3

o
is of order logL: These things are easy. More

delicate are estimates on derivatives.

3.3 Advancement of the smoothed estimate

We use the coarse graining scheme with the stopped boundary re�nement in the �last

layer�
n
x : dL (x) � L= (logL)10

o
:

An essential issue is how to treat bad regions. The main reason for stopping the
re�nement of the coarse-graining scheme (for the smoothed estimates) at L= (logL)10 is
that we don�t have to cope with complicated bad regions. The reason is the following
elementary estimate. We call a point x 2 VL bad if Vl (x) is bad (on any of the four
levels), for any l between �L (x) � l � 2�L (x) ; of dL (x) > L= (logL)10 ; or in case
dL (x) � L= (logL)10 ; if V�L(x) (x) is bad. We denote by BL;! the set of bad points.

Lemma 3.5
If Cond (�; L1) is satis�ed, and L � L1 (logL1)

2 ; then

P
�[

x2VL

�
BL;! � V5�L(x) (x)

	�
� 1� 1

100
exp

h
� (logL)2

i
:

Proof. If BL;! is not contained in some V5�L(x) (x) ; then there are points x; y 2 BL;!
su¢ ciently apart such that fx 2 BLg and fy 2 BLg are independent events. Therefore,
under Cond (�; L1) ; one estimates this probability by

const�L2d
�
exp

�
�
�
1� 3

13

�
(logL)2

��2
� 1

100
exp

h
� (logL)2

i
:
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If the bad region BL cannot be con�ned in the way above, we simply trash the box VL
declare it to be �really bad�. (Of course, we do the same with any of the boxes VL (x) ;
when used in the next induction step). From the above estimate, this is well inside the
desired bound. Therefore, we essentially have to deal only with at most region of the
form V5�L(x) (x) � VL which contains any bad points. The �rst thing to do is to get
estimates when all points are �good�. We want to derive under this condition estimates
which then can be used also to treat the possible one bad region. In order to do this
(formally), we �goodify�possible bad points by exchange there the RWRE coarse grained
transition probabilities P̂L (x; �) ; simply by p̂L (x; �) : Then we want to do two things

� Prove that after this �goodifying�manipulation, we have

Pgoodi�ed
�
k(�L � �L) �Lkvar � (logL)

�9
�
� 1

10
exp

h
� (logL)2

i
: (3.6)

� If a constant C > 0 is chosen properly, then

Pgoodi�ed
�
ĜL
�
x; V�L(y) (y)

�
� CĝL

�
x; V�L(y) (y)

�
; some x; y 2 VL

�
(3.7)

� 1

10
exp

h
� (logL)2

i
:

The last point will help to control the bad region.
I will sketch the argument leading to the �rst estimate. In the perturbation expansion

(3.5) we �rst consider the linear term, but in fact we have also take the ones coming
from the non-linear ones, without any smoothing possibility within the ��s. Therefore,
we consider we have to estimate X

k�1
ĝL�̂

k
L�L�L: (3.8)

The summation over k is no problem, we in fact estimate �̂k�1L in total variation simply
by �k�1: There are some minor complications from these terms, but essentially they can
be handled like the k = 1 term with an additional exponentially decreasing factor, so
we consider only the k = 1 term. I would like to emphasize that the main reason for
propagating the non-smoothed estimate is to be able to handle this sum over k:We write�

ĝL�̂L�L�L

�
(0; �) =

X
y2VL

ĝL (0; y)
�
�̂L�L�L

�
(y; �) :

First, what happens with the summation over the last layer dL (y) � L= (logL)10? There,
the coarse graining is also of order L= (logL)10 ; and �L�L is a smooth kernel, spread
out on scale L; and it is easy to see that

k�L�L (x; �)� �L�L (x+ e; �)kvar � const�L
�1: (3.9)
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Therefore, as the sum over the ĝL (0; y) over this last layer is of order 1; one gets deter-
ministically that this part gives only a contribution of order (logL)�10 ; which is below
what we are shooting for. So this is harmless. Actually the whole summation over
the boundary region dL (y) � 2L= (logL)3 is harmless: A bit deeper inside, the coarse
graining my be worse than L= (logL)9, so that we can not argue as crudely, but there
we �L�L = p̂L�L�L and use that p̂L�̂L is only of order (logL)

�9 ; by the induction
assumption, and we gain an additional (logL)�3 from (3.9). The summation of the

Green�s function in
n
dL (x) � L= (logL)3

o
is only a factor logL; so we see the whole

boundary region is harmless. Therefore, there remains the y-summation in the bulk
dL (y) � 2L= (logL)3. There we chop this bulk into subboxes of side-length L= (logL)3 :
There are (logL)3d such subboxes. Then we split up things into summation over y in
these subboxes. These parts are not completely independent through some overlapping
problems, but they are nearly so, and essentially one can handle them as if they were
independent, and then apply some exponential inequality, like Hoe¤ding�s inequality,
which together with the estimates on ĝL; and the smoothness of �L�L = p̂L�L�L; using
again that �̂Lp̂L is of order (logL)

�9 does the job of proving that

P
�


X

y2Bulk
ĝL (0; y)

�
�̂L�L�L

�
(y; �)





var
� 1

10 (logL)9

�
� 1

20
exp

h
� (logL)2

i
:

There is however a crucial issue here, namely that for applying the exponential
estimates, we have to center the random part, namely, we have to subtractX

y2VL

ĝL (0; y)
�
E�̂L�L�L

�
(y; �) :

Now, it is crucial that the symmetry assumption we have transfers to the symmetry of
E�̂L; at least in the bulk, and as �L (x; y) is harmonic in the �rst variable, this leads to
a cancellation below the level we are shooting for.

The point is that if one gives up the symmetry assumption on the distribution of
the random environment, then one has to take care precisely of expressions of the type
E�̂L; i.e. of the annealed exit distributions, simultaneously with the quenched exit
distributions. This looks being quite delicate, and has not been done.

The next thing to do is to estimate the other part in (3.5). Any of the other parts
contain a factor �̂p̂ twice. Look for instance at

ĝ�̂p̂ĝ�̂p̂�L�L:

We consider ĝ�̂p̂�L�L (x; �) ; which for each x is by the above estimate � 1
10(logL)9

up

to a probability of order 1
20 exp

h
� (logL)2

i
; so that there is any x 2 VL where this is

violated has probability at most of order

Ld

20
exp

h
� (logL)2

i
� 1

15
exp

h
� (logL)2

i
:
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ĝ�̂p̂ can be estimated deterministically:X
y

ĝ (0; y) � const� (logL)6 ; (3.10)

and as we have that �̂p̂ is in total variation of order (logL)�9 ; we are clearly on the
good side, and in this way we can handle easily the rest of the perturbation expansion,
and in this way get (3.6), and (3.7) is somewhat similar.

Now we have to discuss how to handle the possible one bad region. This region is of
size at maximum L= (logL)3 : We write down the perturbation expansion, by splitting
it into the various possibilities of summations where in the �̂ (x; �) parts, the x are
in the bad regions or are not. If there is no summation in over the bad part, then the
contribution is the same as in the �goodi�ed�environment, and we know how it behaves.
We argue now, that we don�t have to consider �multientries�into the bad region. This
is a bid tricky, but essentially (3.7) gives the means to prove that any additional reentry
to the last one, gives a factor � 1=2, so we can do with one entry into the bad region.
(This needs some additional small manipulation). Therefore, we have to look at typical
contribution of the type X

y2BL

ĝL (0; y)
�
�̂L�L�L

�
(y; �) :

The y summation over BL of the Green�s function is harmless: This is at most of order
1; (if the bad region is close to the center). Now, the bad region can be as bad as it is,
the badness is bounded by 2 in total variation. Therefore, a really bad region is getting
improved to a bad region of order degree 3; unless something is going wrong in the good

part, which is happening only with our less than exp
h
� (logL)2

i
probabilities. In the

same way, something bad of level 3 is upgraded to level 2; level 2 is upgraded to level 1;
and level 1 is upgraded to �good�on the next scale. This is the reason for having these
4 levels of badness.

(Of course one might ask why we don�t increase the scale in such a way that �bad�
becomes �good� in one shot. This could be done by increasing scales in steps l !
l (log l)10 ; but the problem would be that in (3.10), we would catch something like
(logL)20 on the right hand side, which would kill us there, and then one would have to
do the nonlinear part of the perturbation expansion in a much more sophisticated way.
Therefore, I think that to distinguish several levels of badness is unavoidable).

3.4 Advancing the non-smoothed estimate

For getting information about k�L � �Lkvar ; we cannot stop to re�ne the coarse graining
close to the boundary, and therefore, we take the original coarse graining scheme. The
drawback is that we have now to take into account multiple bad regions close to the
boundary. For instance, if the scale is La; a < 1; (meaning that we are about at the
same distance from the boundary), then the probability for VLa (x) to be bad is estimated
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only by exp
h
� (1� 3=13) (logLa)2

i
; so it is clear that we cannot exclude multiple bad

boxes if we shoot for an estimate of order exp
h
� (logL)2

i
:

We split the boundary region of VL up into layers �j
def
=
�
x 2 VL : 2j�1 � dL (x) < 2

j
	
;

and we chop this layer again into subboxes of about square size, and we distinguish be-
tween �good�and �bad�of these subboxes. The probability that any of these subboxes
in layer j is bad is about exp

�
� log2

�
2j
��
= exp

�
� const�j2

�
; and therefore, the fur-

ther inside we go with the layer, the less frequent are the bad regions inside the layer.
Due to essential independence of these bad regions, we can do a large deviation estimate
which lead to the fact that if Xj is the number of bad subboxes in layer �j ; and Nj is
the total number of boxes, then

P
�
Xj > j�3=2Nj ; some j with 2

j � 2L

(logL)3

�
� 1

10
exp

h
� (logL)2

i
:

We write B for the union of these bad subboxes, neglecting for the moment the
possibility that there might still be a bad region in the bulk (which can be incorporated
easily). The part of the perturbation expansion where there are no summands over
�̂ (x; �) with x 2 B is simply the exit distribution in a goodi�ed environment, and
this can be estimated easily. So there remains the part which has summands, perhaps
multiple ones, in the bad region. In principle, this might become quite complicated
as there may be clusters of bad regions, but we want to avoid any discussion of this
issue, which we can, because we are shooting only for non-smoothed exit distributions.
The point is that we stop the expansion after the �rst appearance of a summation in
B: Stopping means, that we leave afterwards the original RWRE object. To see this,
we remark that when iterating (3.1), we don�t have to iterate it in�nitely many times
to arrive at the expansion (3.2), but we can stop the expansion whenever we like, for
instance after entering a bad region in the boundary for the �rst time. The price we
have to pay for this is that we then have to use the RWRE kernels GU or �U as the last
factor, but �U is bounded in total variation by 2: Then we resume the part before the �rst
summation inside B; which again just gives the RWRE Green�s function, evaluated only
in the goodi�ed environment. So the �bad�part of the expansion for k(�L � �L) (0; �)kvar
gives X

y2B




Ĝgoodi�edL (0; y) �̂�L (y; �)




var
:

Now, we estimate by brute force



�̂�L (y; �)




var
� 2; and getX

y2B




Ĝgoodi�edL (0; y) �̂�L (y; �)




var
� 2

X
y2B

Ĝgoodi�edL (0; y) ;

but the goodi�ed RWRE Green�s function, we can estimate Ĝgoodi�edL (0; y) using (3.7)
by const�ĝL (0; y), and we are done. (There is some fooling around with the layers very
close to the boundary, but for any �xed J 2 N; we can choose " small enough that there
is absolutely no bad region in these layers).
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In this way one can advance the estimates of the smoothed estimate and the non-
smoothed estimate. In the induction procedure, the non-smoothed estimate is used also
to advance the estimate of the smoothed estimate, namely to handle the expression (3.8)
for k � 2: The advancement of the non-smoothed estimate is relying on the smoothed
estimate at many places. However, besides helping to advance the smoothed estimate,
the proof of the advancement of the non-smoothed estimate can be slightly modi�ed
to really prove the statement of the theorem, namely that depending on the deviation
we are shooting for, we can choose an appropriate smoothing, and furthermore, or we
increase the smoothing with L in an arbitrary way, the total variation deviation goes to
0: (Theorem 3.2 and Remark 3.3). This just need a slight modi�cation of the argument:
If we have a �xed smoothing scale �; then one can handle some of the layers close to the
boundary in the way we did in the previous section, because there we use the smoothing
by the scale �; and therefore the bigger � is the more of the layers we can leave out, so
that in the summation above over y 2 B; we can restrict to layers deeper inside which
give then less of a contribution. So in fact the whole proof gives that Cond (�; L1) implies
that for L � L1 (logL1)

2

P
�

(�L � �L) ��(�) (0; �)

var � �

�
� exp

h
� (logL)2

i
provided � (�) is chosen properly.
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