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1 Introduction

In 1988, Bak, Tang and Wiesenfeld (BTW) introduced a lattice model of what they
called “self-organized criticality”. Since its appearance, this model has been studied
intensively, both in the physics and in the mathematics literature. It shows how
a simple dynamics can lead to the emergence of very complex structures and drive
the system towards a stationary state which shares several properties of equilibrium
systems at the critical point, e.g. power-law decay of cluster sizes and of correlations
of the height-variables.

Some years later, Deepak Dhar generalized the model, discovered the “abelian
group structure of addition operators” in it and called it “the abelian sandpile model”(
abbreviated from now on ASM). He studied the self-organized critical nature of the
stationary measure and gave an algorithmic characterization of recurrent configu-
rations, the so-called “burning algorithm”. This algorithm gives a one-to one cor-
respondence between the recurrent configurations of the ASM and rooted spanning
trees. The correspondence with spanning trees allowed Priezzhev to compute the
height probabilities in dimension 2 in the infinite-volume limit. Probabilities of cer-
tain special events -so-called “weakly allowed clusters”- can be computed exactly in
the infinite-volume limit using the “Bombay-trick”. In the physics literature people
studied critical exponents with scaling arguments, renormalization group method and
conformal field theory (in d = 2), and it is argued that the upper critical dimension
of the model is d = 4 [35]. Dhar and Majumdar studied the model on the Bethe
lattice where they computed various correlation functions and avalanche cluster-size
distributions exactly in the thermodynamic limit, using a transfer matrix approach.

Since the discovery of the abelian group structure of the set of of recurrent config-
urations, in the mathematics literature (especially combinatorics and algebraic com-
binatorics) one (re)introduces the model under the names “chip-firing game, Dirichlet
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game”[6], [7]. “The sandpile group of a graph” is studied [6], and the intriguing geo-
metric structure of its neutral element is investigated e.g. in [23]. Asymmetric models
are studied in [36], [15], and one finds a generalization of the “burning algorithm”:
the so-called “script algorithm”.

In the meanwhile, several other models of “self-organized criticality” were intro-
duced, such as e.g. forest fires, the Bak-Sneppen evolution model, and Zhang’s model
which is a (non-trivial) variation of the BTW-model with continuous heights (see [38],
[3], [21] for a good overview of SOC-models). The paradigm of “self-organized crit-
icality” became very popular and is now used in many areas of the natural sciences
such as geology, biology, cosmology. The underlying idea is always that some simple
dynamical mechanism generates a stationary state in which complex behavior (mani-
fested e.g. through power-laws tails of avalanche sizes) appears in the thermodynamic
limit (i.e., large system size). This complex structure appears “spontaneously”, i.e.,
as a result of the dynamics, more precisely without having fine-tuned certain param-
eters (such as temperature or magnetic field) as has to be done in order to reach
“an ordinary critical point” in a model of equilibrium statistical mechanics such as
e.g. the Ising model. Let us remark however that the concept of SOC, especially
as opposed to ordinary criticality, has also been criticized see e.g. [13]. From the
mathematical point of view, one does not have a unambiguous definition of SOC, but
this is not really a problem because the models in which some kind of SOC appears
such as the BTW-model are interesting and challenging, and are a starting point of
many well-defined mathematical questions.

These notes provide an introduction to the ASM and focus on the problem of defin-
ing and studying the stationary measure of the ASM and its stationary dynamics in
the infinite-volume limit. There are several motivations to do this. First, all inter-
esting properties such as power-law decay of avalanche sizes and height-correlations,
emerge in the large volume limit. It is therefore a pertinent and basic question
whether this large-volume limit actually exists, i.e., whether all expectations of local
functions of height variables have a well-defined infinite-volume limit. Although for
special local functions this can be proved because the infinite-volume limit expecta-
tions can be computed exactly using the “Bombay-trick”, for simple functions such
as the indicator that two neighboring sites have height two, it was not even known
whether the infinite-volume expectation exists.

Second, from the mathematical point of view, defining the infinite-volume dynam-
ics is a non-trivial and interesting problem because one has to deal with the strongly
“non-local” nature of the sandpile dynamics (adding a grain at a particular site can
influence the heights at sites far away). In that respect both the construction and
the study of ergodic properties of such processes in infinite-volume are very different
from classical interacting particle system theory [24], where processes have the Feller
property and are constructed via a semigroup on the space of continuous functions.
Continuity in the product topology is related to “locality” (a continuous function of
the height-configuration does uniformly weakly depend on height variables far away).
In the sandpile model this construction and all its beautiful corollaries (such as the re-
lation between stationary measures and the generator) break down. The non-locality
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can be controlled only for “typical configurations” i.e., the probability that the height
at a fixed site is influenced by additions far away is very small. This non-uniform
control of the locality turns out to be sufficient to define a stationary dynamics (i.e.,
starting from typical configurations). Moreover the abelian group structure which
can be recovered in infinite volume is of great help in the definition and the study of
the ergodic properties of the dynamics.

The systematic study of the ASM in infinite volume began in [27] where the
one-dimensional ASM is defined, using a coupling and monotonicity approach, in
the spirit of [25]. The one-dimensional ASM has no non-trivial stationary dynamics
(the infinite-volume limit of the stationary measures is the Dirac measure on the all-
two configuration), so the only interesting properties lie in the transient regime of
the evolution of all initial height configurations to the all-two configuration. In [28]
we studied the infinite limit of the ASM on the Bethe lattice (i.e., rootless binary
tree), using the transfer matrix method developed in [11]. In [29] we investigate
the dissipative model, which is not critical anymore (the tail of the distribution of
avalanche sizes is exponential) but still has some (better controllable) form of non-
locality. In this context, one recovers the full group structure of the finite-volume
ASM, and obtains unique ergodicity of the dynamics. In [1] the authors prove the
existence of the infinite-volume limit µ of the stationary measures µV of the ASM
for Zd using the correspondence with spanning trees, and properties of the infinite-
volume limit of uniform spanning trees, as studied first by Pemantle [32] (see also [4]
for an extended study of uniform spanning forests). The question of existence of the
dynamics starting from µ-typical configurations is solved in d > 4 in [18]. In [18] we
also prove almost-sure finiteness of avalanches and ergodicity of the infinite-volume
dynamics in d > 4. Definition and properties of the dynamics in d = 2 remains an
open and challenging problem.

These notes are organized as follows. In chapter two we study the one-dimensional
model and introduce much of the material of the Dhar-formalism such as abelian group
structure, burning algorithm, spanning trees, toppling numbers. In chapter three we
introduce the Dhar-formalism in the general context, introduce “waves of topplings”
and explain the Bombay-trick. In chapter four we introduce the basic questions about
infinite-volume limits of the stationary measure and of the dynamics. In chapter five
we study the dissipative model and its ergodic properties. Finally in chapter 6 we
come back to the critical model and summarize the results of [1], [18]. I have chosen to
include only “simple” (i.e., short and non-trivial) proofs, whereas complicated proofs
are scotched in such a way that the reader will (hopefully) be convinced of their
correctness and is capable of reading them in full detail without difficulty.

2 Prelude: the one-dimensional model.

2.1 The crazy office

In the crazy office, N persons are sitting at a rectangular table. Person 1 is sitting at
the left end, person N at the right end. We can e.g. think of them as commissioners
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who have to treat files (e.g. proposals for funding of projects). All of them can
treat at most two files, and initially all of them have at least one file (to save the
appearance). In fact, commissioners never treat the files (that is one of the reasons of
the craziness of the office), so in normal circumstances these files are just laying there
in front of them. From time to time however the director of the commission comes
in. He doesn’t treat files either, he distributes them. When he enters, he chooses
a commissioner at random and gives him an extra file. If the resulting number of
files is still below 2, then the commissioner accepts, otherwise he gets crazy, and
gives one file to each of his neighbors (this is called a “toppling”). For the leftmost
commissioner this means giving one file to his right neighbor, and throwing one file
through the window, and analogously for the rightmost commissioner. This process
goes on until all commissioners again have at most two files in front of them. The
process is called “a period of activity” or “an avalanche”. A little thought about the
presence of the windows reveals that the process always stops (this would not be the
case if it were a round table). We now only look at the stable configurations (without
crazy commissioners) in this process.

A stable configuration of files (later we will call this a height configuration) is a
map

η : V = {1, . . . , N} → {1, 2}
The set of all stable configurations is denoted by Ω. A general (i.e., possibly unstable)
configuration is a map

η : V = {1, . . . , N} → {1, 2 . . .}

The set of all configurations is denoted by H. We call S(η) the stable result of η, i.e.,
the configuration left when all activity of crazy commissioners has stopped. At this
point one can (and should) doubt whether this map S : H → Ω is well-defined, i.e.,
what to do if two commissioners get crazy, stabilize them both together, or in some
order. It turns out that in whatever way you organize the activity of stabilization,
you will always end up with the same stable configuration.

The configuration at time n of the process just described is given by

ηn = S

(
η0 +

n∑
i=1

δXi

)
where Xi are i.i.d. uniformly distributed on {1, . . . , N}, representing the places where
the director adds a file, and where S denotes stabilization. This defines a Markov
chain on the finite state space Ω, and so in the long run we will only see the recurrent
configurations of this Markov chain. The Markov chain is not irreducible. In partic-
ular there are transient configurations. Consider e.g. N = 3 and the configuration
211. Once the two neighboring ones disappear, they will never come back. Indeed, in
this process a height one can only be created by a toppling, but then the neighboring
site cannot have height one anymore. A little thought reveals what is the end-result
of an addition in some configuration of type

2222212̇2212222222
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Suppose that the dotted two is the place where we add a file. Then think a mirror in
the middle between the two closest sites where the height is one, to the left and to
the right of the dotted site, say e+(x, η), e−(x, η), where x is the site where we added.
After stabilization, e+(x, η), e−(x, η) will have height two, and a height one is created
at the mirror image of the place where the addition took place. In the example, this
gives,

2222222212222222

If one adds now at the left-most two say, then one plays the same game where the
mirror is in between the closest one to the right and an additional site to the left, i.e.,
the result is

2222222122222222

Finally, upon addition at
2222222222222222

the mirror is placed between an extra site to the left and an extra site to the right,
e.g., addition at the dotted site in

2̇2222222222222222

gives
222222222222222221

From this description, it is clear that in the long run we will be left with N +
1 configurations that have at most one site with height one. Restricted to that
unique class of recurrent configurations, which we denote by R, the Markov chain is
irreducible, i.e., every element of R can be reached from every other element of R.

2.2 Rooted spanning trees

Let us now reveal some interesting properties of the (in our case) simple set R. First
|R| = N + 1, and it is not a coincidence that

N + 1 = det(∆) (2.1)

where the matrix ∆ is defined by ∆ii = 2, ∆ij = −1 for |i− j| = 1, i, j ∈ {1, . . . , N}.
Verifying (2.1) is a simple exercise. The matrix ∆ is well-known in graph theory
under the name discrete lattice Laplacian, which comes from the fact that −∆ = ∂2

is a discrete version of the Laplacian (with Dirichlet boundary conditions). Indeed,
if we think of our set {1, . . . , N} as a lattice with lattice spacing ε, and realize that

f(x+ ε) + f(x− ε)− 2f(x) = ∂2f = ε2f ′′(x) +O(ε3)

∂2f is an approximation of the second derivative. The determinant of ∆ is equal to
the number of rooted spanning trees on {1, . . . , N}. In our simple setting a rooted
spanning tree is defined as follows. Define the set V ∗ = V ∪ {∗}; the ∗ is an artificial
site, called the root, added to V . By definition ∗, 1 and ∗, N are neighbors in
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V ∗. Formally, we are thus defining a graph (V ∗, E∗) where the edges are between
neighboring sites. A spanning subgraph is a graph (V ∗, E ′) where E ′ ⊆ E∗, and a
rooted spanning tree is a connected spanning subgraph that does not contain loops.
The matrix tree theorem (see e.g. [5]) gives that the number of rooted spanning trees
of a graph equals the determinant of ∆. So we expect that a natural bijection can be
found between the set R of recurrent configurations and the set of rooted spanning
trees.

This bijection can be defined with the help of “the burning algorithm” introduced
by Dhar [9]. The burning algorithm has as an input the set V = {1, . . . , N} a
configuration η ∈ Ω, and as an output a subset V ′ ⊆ V . It runs as follows. Initially,
V0 = V . In the first step remove (“burn”) all sites x from V which have a height η(x)
strictly bigger than the number of neighbors of x in V . Notice that by stability of
the configuration, these sites are necessarily boundary sites. After the first burning
one is left with the set V1, and one then repeats the same procedure with V replaced
by V1, etc. until no more sites can be burnt. The output B(η, V ) is the set of sites
left when the algorithm stops.

It is easy to see that in our example B(η, V ) = ∅ if and only if η ∈ R. Since the
burning algorithm applied to a recurrent configuration burns all sites, one can imagine
that specifying the paths of burning of every site defines the genealogy of a tree, and
since all sites are burnt, this tree is spanning. Let us now make this correspondence
more precise. Start from a configuration in R. We give to each site in V ∗ a “burning”
time. By definition the burning time of ∗ is zero. We assign burning time 1 to the
boundary sites that can be burnt in the first step, burning time 2 to the sites that
can be burnt after those, etc. The idea is that a site with burning time k+1 “receives
his fire” (has as an ancestor) from a site with burning time k. However there can
be ambiguity if a site x with burning time k + 1 has two neighbors with burning
time k. In that case we choose one of the neighbors as the ancestor, according to a
preference-rule defined by the height η(x). Say the left neighbor has lower priority.
Then in case of ambiguity one chooses the left neighbor if η(x) = 1, and otherwise
the right neighbor.

As an example consider 222 and 212. The edges of the rooted spanning tree of
222 are (∗1)(23)(3∗). Indeed, for the middle site the right (highest priority) neighbor
is chosen as an ancestor because its height is two. For 212 we obtain (∗1)(12)(3∗).

Given the preference rule we obtain a bijection between the set of rooted span-
ning trees and the recurrent configurations. E.g., given our left < right rule, from
(∗1)(23)(3∗) we reconstruct the configuration 2?2 immediately (from the root site 1
and 3 could be burnt in the first step), and from the priority rule we conclude that
the height of the middle site is two because the right neighbor has been chosen.

The choice of the preference-rule is quite arbitrary (one can even choose it de-
pending on the site), and this makes the bijection between the set of rooted spanning
trees and recurrent configurations not extremely elegant. It would be interesting to
find a “natural bijection” where this arbitrariness of the preference-rule is not present
(see also [8], p. 354).
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2.3 Group structure

Besides its relation to spanning trees, there are some more fascinating properties of
the set R. Consider N = 2 for the sake of (extreme) simplicity. Define the operation
⊕ on R by

η ⊕ ζ = S(η + ζ)

where the ordinary + means point-wise addition. This gives rise to the following table

⊕ 21 12 22
21 12 22 21
12 22 21 12
22 21 12 22

We recognize here the Cayley table of an abelian group, i.e., (R,⊕) is an abelian
group with neutral element 22. Remark that we can define ⊕ on the whole of Ω, but
(Ω,⊕) is not a group.

We now introduce still another group (which is isomorphic to the preceding one,
as we will see later). Let us introduce the addition operator ai : Ω → Ω

ai(η) = S(η + δi)

for i ∈ {1, . . . , N}. In words, aiη is the stable result of an addition at site i. Accept
(or verify) for the moment that for all i, j ∈ {1, . . . , N},

aiaj = ajai (2.2)

Later we will prove this so-called abelian property in full detail and generality. By
definition of recurrence, if a configuration η is recurrent then there exist integers
ni > 0 such that

N∏
i=1

ani
i (η) = η (2.3)

The product in (2.3) is well-defined by abelianness. The fact that ni can be chosen
strictly positive derives from the fact that in the course of the Markov chain one adds
to every site with strictly positive probability. Call e =

∏N
i=1 a

ni
i and consider

A = {ζ ∈ R : eζ = ζ}

By definition A is not empty (η ∈ A), and if g =
∏N

i=1 a
mi
i for some integers mi ≥ 0,

then we have the implication “ζ ∈ A implies gζ ∈ A”. Indeed, by abelianness, for
ζ ∈ A,

e(gζ) = g(e(ζ)) = g(ζ)

Therefore, A is a “trapping set” for the Markov chain, i.e., a subset of configurations
such that once the Markov chains enters it, it never leaves it. As a consequence
A ⊃ R, because the Markov chain has only one recurrent class which contains the
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maximal configuration. Since by definition we have A ⊆ R, A = R. Therefore, acting
on R, e is neutral. Since ni > 0, we can define

a−1
i = ani−1

i

N∏
j=1

a
nj

j

and we have the relation
a−1

i ai = aia
−1
i = e (2.4)

From (2.4) we conclude that

G := {
N∏

i=1

aki
i , ki ∈ N} (2.5)

acting on R defines an abelian group.

Of course not all the products of addition operators defining G are different. In
fact, it is easily seen that the group is finite, and we will show that once again

|G| = N + 1 (2.6)

For that, it is sufficient to show that the group acts transitively and freely on R, i.e.,
for all η ∈ R the orbit Oη = {gη : g ∈ G} = R and if gη = g′η for some g, g′ ∈ G,
then g = g′, i.e., gζ = g′ζ for all ζ ∈ R. For the first statement, if η ∈ R and g ∈ G,
then gη can be reached from η in the Markov chain, hence gη ∈ R, and Oη is clearly
a trapping set for the Markov chain, hence Oη ⊃ R. To prove the second statement,
consider for gη = g′η the set

A = {ζ ∈ R : gζ = g′ζ}

then A = R with the same kind of reasoning used in the definition of inverses.
Therefore, for all η, the map

Ψη : G→ R : g 7→ gη

is a bijection between G and R.

However, there is still another way to see that |G| = N +1. This way of reasoning
will be useful because in the general case we will not so easily be able to count the
recurrent configurations. The equality |G| = |R| is however completely general, and
that will be useful to obtain |R|. Counting the number of elements of a group can
become an easy task if we find a treatable isomorphic group. For this, we have to
look for closure relations in G. Here is an easy one. Suppose you add two files to
some commissioner. Since he has at least one file (to save his face), he will certainly
get crazy and give one file to each of his neighbors (modulo the boundary conditions
of course). In symbols this means

a2
i = ai−1ai+1 (2.7)
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for i ∈ {2, . . . N − 1} and
a2

1 = a2, a
2
N = aN−1

Using the toppling matrix ∆ introduced in (2.1), this is summarized as

a∆ii
i =

∏
j∈V,j 6=i

a
−∆ij

j (2.8)

for all i ∈ V . Acting on R we can bring the right hand site to the left, and obtain∏
j∈V

a
∆ij

j = e (2.9)

for all i ∈ V . By abelianness, we infer from (2.9) that for all n : V → Z∏
i∈V

∏
j∈V

a
ni∆ij

j = e (2.10)

Using ∆ij = ∆ji and the definition (∆n)i =
∑

j∈V ∆ijnj , we obtain∏
i∈V

a
(∆n)i

i = e (2.11)

for all n : V → Z. We will show now that, conversely, if∏
i∈V

ami
i = e

for some mi ∈ Z then there exists n : V → Z such that

mi = (∆n)i

In words, this closure relation means that the only “trivial additions” on R are
(integer column) multiples of the matrix ∆.

Suppose ∏
x∈V

amx
x = e (2.12)

where m ∈ ZV . Write m = m+ − m− where m+ and m− are non-negative integer
valued. The relation (2.12) applied to a recurrent configuration η yields∏

x∈V

am+
x

x η =
∏
x∈V

am−
x

x η (2.13)

In words, addition of m+ or m− to η leads to the same final stable configuration, say
ζ. But then there exist k+, k− non-negative integer valued functions on V such that

η +m+ −∆k+ = ζ = η +m− −∆k−

which gives
m = m+ −m− = ∆(k+ − k−)
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Arrived at this point, we can invoke a well-known theorem of elementary algebra.
If you have a group G and a group H and a homomorphism

Ψ : H → G

then G is isomorphic to the quotient H/Ker(Ψ) where Ker(Ψ) is the set of h ∈ H
which are mapped to the neutral element of G. In our case, define

H := {n : V → Z} = ZV

with group operation pointwise addition. Next

Ψ : H → G : n 7→
∏
i∈V

ani
i

Then what we just discussed can be summarized in the equality

Ker(Ψ) = ∆ZV = {∆n : n ∈ ZV }

and hence we have the isomorphism

G ' ZV /∆ZV

Therefore we have
|R| = |G| = |ZV /∆ZV | = det(∆)

To see the last equality, note that ZV is the |V | dimensional hypercubic lattice,
with a volume one unit cell. ∆ZV is another lattice with the columns of ∆ as vectors
defining the unit cell. The quotient of these two lattices can geometrically be viewed
as the non-equivalent points n ∈ ZV of the unit cell of the lattice ∆ZV . Equivalence
is here defined as

n ∼ m

if there exists k ∈ ZV such that

n−m = ∆k

This number of non-equivalent points is precisely the volume of the unit cell of the
lattice ∆ZV , which is det(∆) ( Puzzle this out in the case N = 2 to be convinced).
In general, the equality |ZV /AZV | = det(A) (with A a symmetric matrix with integer
elements and non-negative determinant) is trivial for a diagonal matrix. Indeed , in
that case Aij = aiiδij and

ZV /AZV ' Z/a11Z⊕ Z/a22Z . . .⊕ Z/annZ

an hence |ZV /AZV | =
∏n

i=1 aii = det(A). Since by row and column operations
(i.e., addition and subtraction of columns, or permutation of columns) one can make
every integer-valued matrix diagonal, see e.g. [22], we just have to remark that such
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operations do not change the determinant of a matrix, and do not change (up to
isomorphism) the lattice ZV /AZV .

Here is still another, geometrical proof. |ZV /AZV | is the number of non-equivalent
points in the unit cell defined by A (i.e., the parallelepiped spanned by the rows of
A). We can cover R|V | by disjoint copies of this unit cell. Consider now a large cube
Cn = [−n, n]|V |. Let Nn denote the number of integer points (i.e., points of ZV ) in
the cube, let xn denote the number of unit cells (copies of A) in Cn, and let y denote
the number of non-equivalent points in one unit cell. Then we have

xny = Nn

The volume of the xn unit cells in Cn is xndet(A), so we have

xndet(A) = (2n+ 1)d + o(nd)

Dividing these two relations and taking the limit n→∞ gives

y

det(A)
= lim

n→∞

Nn

(2n+ 1)d + o(nd)
= 1

2.4 The stationary measure

The Markov chain which we defined has a unique recurrent class R and hence its
stationary measure µ concentrates on R. We show now that µ is simply uniform on
R. Consider

µ =
1

|R|
∑
η∈R

δη

Since for all i, ai is a bijection on R we have that the image measure µ ◦ ai is again
uniform on R. Therefore µ is invariant under the individual addition operators ai,
and hence under the Markov chain. In fact for every pair of functions f, g : Ω → R
we have ∫

f(η)g(aiη)µ(dη) =

∫
f(a−1

i η)g(η)µ(dη) (2.14)

The transition operator of our Markov chain is given by

Pf(η) =
1

|V |
∑
i∈V

f(aiη) (2.15)

and so we obtain ∫
gPfdµ =

∫
fP ∗gdµ (2.16)

with

P ∗f(η) =
1

|V |
∑
i∈V

f(a−1
i η) (2.17)

Substituting g ≡ 1 in (2.16) gives the stationarity of µ. Moreover, if we consider
the reversed (stationary) Markov chain {η−n, n ∈ Z} then its transition operator is
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given by (2.17). Therefore the Markov chain is not reversible, but quasi-reversible,
meaning that P and P ∗ commute. Remember the group (R,⊕). It is clear that our
Markov chain restricted to R is an irreducible random walk on this group. Therefore,
the Haar measure (here simply the uniform measure) is invariant. That gives another
explanation for the invariance of the uniform measure on R.

2.5 Toppling numbers

If η ∈ H is a (possibly) unstable configuration, then its stabilization consists in
subtracting columns of ∆ for the unstable sites. Indeed, the effect of a toppling at
site x can be written as

Tx(η)(y) = η(y)−∆xy

for η(x) > 2. The stabilization S(η) is completely determined by the fact that S
is a composition of “legal” topplings Tx (legal meaning that only unstable sites are
toppled) and that S(η) is stable. Moreover, we have the relation

η −∆m = S(η) (2.18)

where m : V → N denotes the column vector collecting the number of topplings at
each site needed to stabilize η. This equation (2.18) will play a crucial role in the
whole theory of the abelian sandpile model.

If η ∈ Ω is a stable configuration, then after addition at i ∈ V , (2.18) specifies to

η + δi −∆mi
η = ai(η) (2.19)

In particular, integrating this equation over µ, and using the invariance of µ under
the action of ai gives

(∆

∫
mi

ηµ(dη))j = δij (2.20)

i.e.,

(

∫
mi

ηµ(dη))j = ∆−1
ij (2.21)

In words this means that the expected number of topplings at site j upon addition
at site i is equal to the “Green function” Gij = ∆−1

ij . Later on, we will see that
this Green function has an interpretation in terms of simple random walk: up to a
(multiplicative) constant it is equal to the expected number of visits at site j of a
simple random walk starting at site i and killed upon leaving V .

Running ahead a little bit, we know that the Green function of random walk on Zd

decays (in the transient case, d ≥ 3) as a power in the distance |i− j|, more precisely

Ei (|{k : Sk = j}|) ' |i− j|−(d−2)

where Sk denotes simple random walk on Zd, d > 2, started at i under the expectation
Ei. This is a first signature of something very interesting which is going on in this
model. In the “thermodynamic limit” (larger and larger volumes) power laws show
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up: the influence (this time expressed as the number of topplings) of an addition at
a site on a far-away site is not decaying exponentially. Physicists say that there is no
“characteristic size” of avalanches, and connect this to “critical behavior”(absence of
a “finite correlation length”). For those of you who are familiar with percolation, at
the critical point there is no infinite cluster (expected for all d, but proved for d = 1, 2
and high d), but the expected cluster size (of the cluster of the origin say) is infinite.
A similar thing is happening here, since∑

j∈Zd,j 6=i

|i− j|−(d−2) = ∞

Summarizing, we have treated a simple model, discovered connections with span-
ning trees, an abelian group, and random walks. This will be the typical ingredients
of these lectures: elementary algebra, some random walk theory, and properties of
spanning trees. It is remarkable that many properties which could be derived in a
very elementary way in this particular model are valid in complete generality.

2.6 Exercises

1. Verify formula (2.1).

2. For η ∈ ZV we define the recurrent reduction of η (notation red(η)) to be the
unique element in RV which is equivalent to η in the sense that there exist
m ∈ ZV such that η = red(η) + ∆m. Show that this reduction is well-defined
(i.e. that there exists a unique equivalent recurrent configuration), and find the
recurrent reduction of 11111.

3. What is the neutral element for the group (R,⊕) when N = 5 ?

4. Show that the toppling numbers defined in (2.18) are monotone in the configu-
ration η. This means if η and η′ are two configurations such that for all x ∈ V
ηx ≤ η′x, (notation η ≤ η′), then for the corresponding topplings mη ≤ mη′ , i.e.,
for all x ∈ V , mη(x) ≤ mη′(x).

5. Show that if m ≡ 1, then ∆m is equal to zero except (∆m)1 = (∆m)N = 1.
Derive from this fact that a configuration is recurrent if and only if upon addition
of one grain at 1 and one grain at N , all sites topple once and the configuration
remains the same.

6. Suppose now that the table is a round table, and there are no windows (=pe-
riodic boundary conditions). Then the game of redistributing files is possibly
going on forever. What is the maximal number of files allowed in the system
such that the game stops ?

13



3 General finite volume abelian sandpiles

In this section we will generalize our findings of the previous section. We consider a
simply connected set V ⊆ Zd, think e.g. of V = [−n, n]d ∩ Zd. In general a simply
connected subset of Zd is a subset V such that “filling the squares” of the lattice
points in V leads to a simply connected subset of Rd. As a toppling matrix ∆ we
consider minus the lattice Laplacian ∆xx = 2d, ∆xy = −1, for x, y ∈ V , |x− y| = 1.
Later on we will generalize this. A height configuration is a map η : V → {1, 2, . . .},
and the set of all height configurations is again denoted by H. A height configuration
η ∈ H is stable if for every x ∈ V , η(x) ≤ ∆xx. A site where η(x) > ∆xx is called an
unstable site. The toppling of a site x is defined by

Tx(η)(y) = η(y)−∆xy (3.1)

This means that the site loses 2d grains and distributes these to his neighbors in V .
Those sites in V which have less than 2d neighbors (“boundary sites”) lose 2d grains
upon toppling, give one grain to each neighbor in V and the other grains dissappear.
The toppling is called legal if the site is unstable, otherwise it is called illegal. It is
elementary to see that

TxTy(η) = η −∆x,· −∆y,· = TyTx(η) (3.2)

if x, y are both unstable sites of η. More precisely, this identity means that if TxTy is
a sequence of legal topplings, then so is TyTx and the effect is the same. This is called
the “elementary abelian property”. For a general height configuration we define its
stabilization by

S(η) = Tx1 . . . Txn(η), (3.3)

by the requirement that in the sequence of topplings of (3.3) every toppling is legal,
and that S(η) is stable.

For a height configuration η ∈ H and a sequence Tx1 . . . Txn of legal topplings we
define the toppling numbers (of that sequence) to be

nx =
n∑

i=1

I(xi = x) (3.4)

The configuration resulting from that sequence of topplings can be written as Tx1 . . . Txn(η) =
η −∆n, where n is the column indexed by x ∈ V , with elements nx.

Remark 3.5. In the algebraic combinatorics literature, the model we just introduced
is called “chip-firing game”, or “Dirichlet game”, see e.g. [8]. The number of topplings
is called “score-function”. The fact that S is well-defined is then formulated as follows:
at the end of every Dirichlet game, the score function and the final chip-configuration
are the same.

Lemma 3.6. If η ∈ H is a height configuration and Tx1 . . . Txn a sequence of legal
topplings such that the resulting configuration is stable, then the numbers nx, x ∈ V are
maximal. I.e., for every sequence of legal topplings Ty1 . . . Tym the toppling numbers
n′ satisfy n′x ≤ nx for all x ∈ V .

14



Before proving the lemma, let us see that this is sufficient to prove the following

Proposition 3.7. S is well-defined.

Indeed, suppose that Tx1 . . . Txn and Ty1 . . . Tym are two legal sequences of topplings
leading to a stable configuration. Then, the resulting stable configuration is a function
of the toppling numbers only. By maximality, nx = mx for all x ∈ V , for both
sequences, and hence the resulting stable configurations are equal as well. So this
statement implies that in whatever order you topple the unstable sites of some height
configuration, at the end you will have toppled every site a fixed amount of times
(independent of the order) and the resulting stable configuration will be independent
of the chosen order.

We now give the proof of lemma 3.6.

Proof. We will prove the following. Suppose that we have the identity

ξ = η −∆n (3.8)

with ξ stable and nx ≥ 0 for all x ∈ V . Suppose that x1, . . . , xn is a legal sequence of
topplings with toppling numbers mx =

∑n
i=1 δxi,x, then mx ≤ nx for all x ∈ V .

Suppose that a sequence of legal topplings has toppling numbers mx ≤ nx (this is
always possible since we can choose mx = 0 for all x), and for a site j ∈ V an extra
legal toppling can be performed. Put

ζ = η −∆m (3.9)

Since an extra legal toppling is possible at site j in ζ, ζj > ξj. Combining (3.8) and
(3.9) this gives

(mj − nj)∆jj <
∑
i6=j

(ni −mi)∆ij ≤ 0 (3.10)

In the last inequality we used that ∆ij ≤ 0 and ni ≥ mi for i 6= j. This implies that
mj + 1 ≤ nj (since ∆jj > 0). Therefore if m′ denotes the toppling vector where we
legally topple the site j once more (after the legal topplings with toppling number
vector m), then the inequality m′

j ≤ nj still holds.

The fact that S is well-defined implies immediately that the addition operator
axη = S(η + δx) is well-defined and that abelianness holds, i.e., for x, y ∈ V , and all
η ∈ Ω,

axayη = ayaxη = S(η + δx + δy)

The dynamics of the abelian sandpile model (ASM) is then defined as follows. Let
p = p(x) be a probability distribution on V , i.e., p(x) > 0,

∑
x∈V p(x) = 1. Starting

from η0 = η ∈ Ω, the state at time n is given by the random variable

ηn =
n∏

i=1

aXi
η (3.11)
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where X1, . . . , Xn are i.i.d. with distribution p. The Markov transition operator de-
fined on functions f : Ω → R is then given by

Pf(η) =
∑
x∈V

p(x)f(axη) (3.12)

Note that since we add at each site with strictly positive probability, from every
configuration η ∈ Ω the maximal configuration ηmax (defined by ηmax(x) = ∆xx for
all x ∈ V ) can be reached from η. Therefore the set of recurrent configurations R is
equal to the unique recurrent class containing the maximal configuration.

We denote by A the set of all finite products of addition operators working on Ω.
This is an abelian semigroup, and as before, on the set R of recurrent configurations
of the Markov chain, A is a group, which we denote by G.

The following lemma gives some equivalent characterizations of recurrence.

Lemma 3.13. Define

R1 = {η : ∀x ∈ V, ∃nx ≥ 1, anx
x η = η}

and
R2 = {η : ∃x ∈ V, ∃nx ≥ 1, anx

x η = η}
then R1 = R2 = R.

Proof. Clearly, R1 ⊆ R. Indeed starting from η ∈ R1, η can be reached again with
probability bounded from below by p(0)n0 > 0, and hence will be reached infinitely
many times with probability one.

To prove the inclusion R ⊆ R1, remember that the set of products of addition
operators working on R forms a finite abelian group G, with |G| = |R|. Since every
element of a finite group is of finite order, for every ax ∈ G there exists nx ∈ {1, 2, . . .}
such that anx

x = e.

To prove that R2 = R, we have to show that if there exists x, nx such that
anx

x η = η, then for all y ∈ V , there exist ny such that a
ny
y (η) = η. Since the number

of stable configurations is finite, there exist py, ny such that

apy
y a

ny
y (η) = apy

y η (3.14)

Since anx
x η = η by assumption we have aknx

x η = η for every non-negative integer k.
Consider k large enough, apply the closure relation (3.24), and the abelian property
to rewrite the equality aknx

x η = η in the form

aknx
x η = apy

y (ax1 . . . axn)(η) = η (3.15)

for some x1, . . . , xn ∈ V (possibly equal to y). Then, using (3.14) we obtain

any
y (η) = any

y a
py
y (ax1 . . . axn)(η)

= ax1 . . . axna
py
y a

ny
y (η)

= ax1 . . . axna
py
y (η) = η (3.16)
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We now give a preparatory lemma in view of the “burning algorithm characteri-
zation” of recurrent configurations.

Definition 3.17. 1. Let A ⊆ Ω, and H ⊆ A. We say that A is H-connected to
R if for every η ∈ A, there exists h ∈ H such that h(η) ∈ R.

2. Let A ⊆ Ω, and H ⊆ A. We say that H has the A-group property if H restricted
to A is a group.

3. A subset A ⊆ Ω is said to be closed under the dynamics if η ∈ A and g ∈ A
implies gη ∈ A.

Example: Ω is A-connected to R, and A has the R-group property.

Lemma 3.18. Suppose A ⊆ Ω, such that H ⊆ A has the A-group property, is H-
connected to R, and suppose furthermore that A is closed under the dynamics, then
A = R.

Proof. Clearly, A is a trap for the Markov chain, hence by uniqueness of the recurrent
class R, A ⊃ R. Suppose η ∈ A, then by assumption there exists g ∈ H such that
gη ∈ R. Since H has the A group property, the element g ∈ H can be inverted, i.e.,
η = g−1(gη). Hence η can be reached from a recurrent configuration in the Markov
chain, and therefore η ∈ R.

3.1 Allowed configurations

Definition 3.19. Let η ∈ H. For W ⊆ V , W 6= ∅, we call the pair (W, ηW ) a
forbidden subconfiguration (FSC) if for all x ∈ W ,

η(x) ≤
∑

y∈W\{x}

(−∆xy) (3.20)

If for η ∈ Ω there exists a FSC (W, ηW ), then we say that η contains a FSC. A
configuration η ∈ H is called allowed if it does not contain forbidden subconfigurations.
The set of all stable allowed configurations is denoted by R′.

Remark 3.21. 1. Notice that the definition of allowed has a consistency property.
If V ⊆ V ′ and η ∈ ΩV ′ is allowed, then its restriction ηV ∈ ΩV is also allowed.
This will later allow us to define allowed configurations on the infinite lattice
Zd.

2. If (W, ηW ) is a forbidden subsconfiguration, then |W | ≥ 2.

Lemma 3.22. R′ is closed under the dynamics, i.e., for all g ∈ A, η ∈ R′, gη ∈ R′.
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Proof. Let us call A the set of all (possibly unstable) allowed configurations. It is
sufficient to prove that this set is closed under additions and legal topplings. Clearly,
if η ∈ A and x ∈ V , then η + δx ∈ A. Therefore, it suffices to see that A is closed
under toppling of unstable sites. Suppose the contrary, i.e., suppose η ∈ A and
Tx(η) 6∈ A, where Tx is a legal toppling. Then Tx(η) contains a FSC (W, (Txη)W ).
Clearly, W must contain x, otherwise (W, ηW ) is forbidden. Therefore we have

Tx(η)(y) = η(y)−∆xy ≤
∑

z∈W\{y}

(−∆yz)

for all y ∈ W . This implies

η(y) ≤
∑

z∈W\{x,y}

(−∆yz)

i.e., (W \ {x}, ηW\{x}) is a FSC. Indeed by remark 3.21 an FSC contains at least two
points, hence W \ {x} cannot be empty.

This lemma immediately implies R′ ⊃ R. To prove the inclusion R′ ⊆ R (which
will deliver us from the primes), we will use lemma 3.18. In order to do so, let us
first recall the burning algorithm. For η ∈ Ω we start removing all sites from V that
satisfy η(x) >

∑
y∈V,y 6=x(−∆xy). This leaves us with a set V1, and we continue the

same procedure with V1, ηV1 , etc. until the algorithm stops at some set B(V, η) ⊆ V .
It is clear from the definition of allowed configurations that η ∈ R′ if and only if
B(V, η) = ∅.

The following lemma gives an equivalent characterization.

Lemma 3.23. For x ∈ V denote by αV (x) the number of neighbors of x in V . In
particular αV (x) 6= 2d if and only if x is a boundary site, x ∈ ∂V . Then we have
η ∈ R′ if and only if ∏

x∈∂V

a2d−αV (x)
x η = η (3.24)

Before giving the proof, let us describe what is happening here. Imagine the two-
dimensional case with V a square. Then the special addition of (3.24) means “add
two grains to each corner site and one grain to each boundary site which is not a
corner site”. The result of this addition on an allowed stable configuration will be
that every site topples exactly once. If you accept that for a moment (we will prove
that), then, after the topplings the resulting configuration is

η +
∑
x∈∂V

(2d− αV (x))δx −∆1

where 1 is the column defined by 1x = 1 for all x ∈ V . It is a trivial computation
to show that the second and the third term of this expression cancel, and hence if it
is true that upon the special addition every site topples exactly once, then we have
proved (3.24).
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Proof. We have to prove that every site topples exactly once if and only if the con-
figuration is allowed. Suppose we add sV :=

∑
x∈V (2d − αV (x))δx to an allowed

configuration. First there will be some boundary sites which will topple, these are
exactly the sites where the height configuration satisfies the inequality

η(x) + 2d− αV (x) > 2d (3.25)

i.e.,

η(x) > αV (x) =
∑

y∈V \{x}

(−∆xy) (3.26)

So these sites which topple are exactly the sites that can be burnt in the first step
of the burning algorithm. After the topplings of these unstable boundary sites, it is
again easy to see that the sites which are unstable are exactly those that would be
burnt in the second step of the burning algorithm, etc. Therefore, if the configuration
is allowed, every site topples at least once. To see that every site topples at most
once, it suffices to prove that this is the case for the special addition applied to the
maximal configuration. Indeed, by abelianness, we will have the maximal number of
topplings at each site for that configuration. After the special addition, we topple
all boundary sites once. The result is that the height of these boundary sites equals
2d − αV (x) and the result is the “special addition” sV \∂V so every boundary site of
this new set V1 = V \ ∂V will topple once and these topplings will not cause unstable
sites on ∂V , because there the height is 2d−αV (x) and the topplings at ∂V1 can (and
will) add at most αV (x) grains to the site x. To visualize, one has to imagine that
the “wave of topplings” goes to the inside of the volume and does not come back to
places previously visited.

Repeating this argument with V1, we see that every site topples exactly once.

Theorem 3.27. A stable configuration η ∈ Ω is recurrent if and only if it is allowed.

Proof. Consider

H = {
∏

x∈∂V

anx
x , nx ≥ 0}

By lemma 3.23, H restricted to R′ is a group. Indeed the product defining the neutral
element e =

∏
x∈∂V a

2d−αV (x)
x has strictly positive powers of every ax, x ∈ ∂V . It is

clear thatR′ is H-connected toR, andR′ is also closed under the dynamics by lemma
3.18. Hence by lemma 3.18, R′ = R.

So we can now decide by running the burning algorithm whether a given stable
configuration is recurrent or not. Here are some examples of forbidden subconfigura-
tions in d = 2.

1 1

1 2 1

1 1
2 2 1
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Here are some examples of recurrent configurations also in d = 2.

2 3 3
4 1 4
2 4 3

1 2 4
4 2 4
3 3 1

3.2 Rooted spanning trees

As in the one-dimensional case of the previous section, also in the general case there
is a one-to-one correspondence between recurrent configurations and rooted spanning
trees. The construction is analogous. One first “extends” the graph by adding ∗, an
extra site which will be the root. The extended graph (V ∗, E∗) is then defined by
adding extra edges from the boundary sites to the root, for x ∈ ∂V , 2d−αV (x) edges
go from x to the root. In (V ∗, E∗) every site in V has exactly 2d outgoing edges. We
order the edges in some way say, e.g., in d = 2, N < E < S < W . Given the recurrent
configuration, we give burning times to every site. The burning time of ∗ is zero by
definition, and the burning time 1 is given to the boundary sites which can be burnt
in the first stage of the algorithm, boundary time 2 to the sites which can be burnt
after those, etc. The edges in the spanning tree are between sites with burning time
t and t+ 1, with the interpretation that the site with burning time t+ 1 receives his
fire from the neighboring site with burning time t. In case of ambiguity, we choose
the edge according to the preference rule, depending on the height. As an example,
consider

4 4 4
4 1 4
4 4 3

The corresponding burning time configuration is

1 1 1
1 2 1
1 1 1

Therefore we have ambiguities in connecting the root to the corner sites, and the
middle site to the boundary sites. So look at the upper left corner site e.g., we have
the choice between N,W . The height is maximal (it could have been 3 as well), so we
choose the highest priority, i.e., W . For the middle site, we have the minimal height,
so we choose the lowest priority amongst our 4 edges, i.e., N . So this gives as edge
configuration for the corresponding rooted spanning tree

W N E
W N E
W S E
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where we indicated for each site the edge to the site neighboring it that is closer to
the root.

Given the preference rule, and the spanning tree one can reconstruct the height
configuration. So we have made a bijection between R and the set of rooted spanning
trees, and hence, by the matrix tree theorem we have a first proof of Dhar’s formula

|R| = det(∆) (3.28)

3.3 Group structure

In the previous section, we gave a proof of |R| = det(∆) by counting the number of
group elements of G in the one-dimensional situation. The basic closure relation∏

y

a∆xy
y = e

remains unaltered, and derives from the elementary fact that adding 2d grains to a
site makes it topple for sure, and hence we could as well have added one grain to each
neighbor directly. So, as already shown in (3.29), the homeomorphism

Ψ : ZV → G : n = (nx)x∈V 7→
∏
x

a(∆n)x
x (3.29)

satisfies Ker(Ψ) ⊃ ∆ZV = {∆n : n ∈ ZV }. This gives

Proposition 3.30. Let Ψ be defined by (3.29), then Ker(Ψ) = ∆ZV , and hence

G ' ZV /∆ZV (3.31)

We obtain as an straightforward corollary the following.

Proposition 3.32. For every probability distribution p(x) > 0,
∑

x p(x) = 1, the
Markov chain with transition operator

Pf(η) =
∑

x

p(x)f(axη)

has as a stationary distribution

µ =
1

|det(∆)|
∑
η∈R

δη

Moreover, in L2(µ) the adjoint transition operator (the transition operator of the time
reversed process) is given by

P ∗f(η) =
∑

x

p(x)f(a−1
x η)
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Exactly as we derived in the previous section, we also have

Proposition 3.33. Let nx
η denote the column of toppling numbers needed to stabilize

η + δx. Then we have ∫
nx

η(y)µ(dη) = G(x, y) = ∆−1
xy (3.34)

By the Markov inequality G(x, y) is also an upper bound for the probability that
y has to be toppled upon addition to η, where η is distributed according to µ.

3.4 Addition of recurrent configurations

Define for two stable height configurations

η ⊕ ζ = S(η + ζ) (3.35)

Then we have the following

Theorem 3.36. R,⊕ is a group isomorphic with G.

Proof. We can rewrite

η ⊕ ζ = S(η + ζ) =
∏
x∈V

aηx
x (ζ) =

∏
x∈V

aζx
x (η) (3.37)

Define for some η ∈ R:

e :=
∏
x∈V

a−ηx
x (η) (3.38)

This is well-defined because ax working on R are invertible. It is easy to see that the
set

A = {ξ ∈ R : e⊕ ξ = ξ ⊕ e = ξ} (3.39)

is closed under the dynamics and non-empty, hence A = R. Every element η ∈ R
has an inverse defined by

	η =
∏
x∈V

a−ηx
x e (3.40)

Hence, R,⊕ is a group. To show that G and R are isomorphic is left as an (easy)
exercise.

Let us discuss an interesting consequence of this theorem. Define η, ξ to be equiv-
alent (η ∼ ξ) if there exists n ∈ ZV such that η = ξ − ∆n. Then each equivalence
class of ZV / ∼ contains a unique element of R. That an equivalence class contains
at least one element of R is easy. Start from η ∈ ZV . Addition according to n = ∆1
gives an equivalent configuration, and stabilization of this configuration yields an-
other equivalent configuration. Sufficiently many times iterating this special addition
and stabilization gives an equivalent recurrent configuration. Suppose now that η ∼ ξ
and both are elements of R. It is easy to see that η ∼ ξ implies that for all ζ ∈ R:
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η⊕ζ = ξ⊕ζ (see the closure relation in G). Choosing ζ = 	η we obtain e = ξ⊕(	η),
which gives by adding η, ξ⊕ (	η)⊕η = ξ = η. Notice that the uniqueness of a repre-
sentant of every equivalence class does not extend to the stable configurations. E.g.,
if η is stable but not recurrent then upon addition of ∆1 and subsequent stabilization,
not every site will topple. On the other hand η is clearly equivalent with the resulting
stable configuration (which is stable and different from η).

The next proposition shows a curious property of the neutral element e of the
group (R,⊕).

Proposition 3.41. Upon adding e to a recurrent configuration η, the number of
topplings at each site is independent of η.

Proof. For a possible unstable configuration η, denote by nη the column collecting
the toppling numbers at each site in order to stabilize η. By abelianness, we have

nξ+η+ζ = nξ⊕η+ζ + nξ+η = nξ+η⊕ζ + nη+ζ

Choosing η = e gives the identity

nξ+e = nζ+e

which proves the proposition.

3.5 General toppling matrices

The results of the previous subsections apply for a general symmetric toppling matrix,
which is defined as follows.

Definition 3.42. A integer-valued matrix matrix ∆ is called a toppling matrix if

1. For all x, y ∈ V , ∆xx ≥ 2d, ∆xy ≤ 0 for x 6= y

2. Symmetry: for all x, y ∈ V ∆xy = ∆yx

3. Dissipativity: for all x ∈ V
∑

y ∆xy ≥ 0

4. Strict dissipativity:
∑

x

∑
y ∆xy > 0

A toppling matrix is called irreducible if from every site x ∈ V there is a path x0 =
x, . . . , xn = y where for all i ∈ {1, . . . , n}, ∆yi−1yi

< 0 and y is a dissipative site.

A particularly important example is the so-called dissipative model with (integer)
“mass” γ > 0, which is defined as follows

∆xx = 2d+ γ

∆xy = −1 for |x− y| = 1, x, y ∈ V (3.43)
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The interpretation of the topplings governed by ∆ is as follows. The maximal stable
height of a site is 2d + γ. If an unstable site topples, it looses 2d + γ grains where
(at most) 2d are distributed to the neighbors, and looses on top of it γ grains. So in
that case upon each toppling grains are lost. We will see later that this system is not
critical: in the limit of growing volumes, avalanche sizes are exponentially damped.
This is related to the fact that the massive Green function G(x, y) = ∆−1

xy decays
exponentially in the distance between x and y. For γ = 0 one recovers the original
critical model.

Finally, the symmetry requirement can be dropped, at the cost of a much more dif-
ficult characterization of recurrent configurations, via the so-called script-algorithm,
see [36], [15] for more details. This subject will not be dealt with in this lecture notes.
Our main direction is to prove results for the infinite-volume system, and there the
connection with spanning trees is crucial (and lost in the asymmetric case).

3.6 Avalanches and waves

One of the most intriguing properties of the ASM is the fact that power laws turn
up in the large-volume limit. More precisely, the size and the diameter of avalanche
clusters have a power-law behavior in the limit of large volumes. Though from a
rigorous point of view not very much is known about this, let me explain shortly the
claims made by physicists and supported by both numerical experiments as well as
by non-rigorous scaling arguments. If we start from a configuration η ∈ Ω, then we
have the relation

η + δi −∆ni
η = aiη

The avalanche cluster at site i ∈ V is then defined as

CV (i, η) = {j ∈ V : ni
η(j) > 0}

In words, this is the set of sites which have to be toppled at least once upon addition
at i. The power-law behavior of this cluster is expressed by the following conjecture

lim
V ↑Zd

µV (|CV (i, η) > n)| ' Cn−δ

where µV denotes the uniform measure on recurrent configurations in the volume V
So this conjecture tells us that first of all the limit V ↑ Zd exists and moreover

lim
n↑∞

nδ lim
V ↑Zd

µV (|CV (i, η)| > n) = C

for some C > 0. As in the case of critical percolation, similar cluster characteristics,
like the diameter are believed to exhibit power-law behavior. From a mathematical
point of view even the weaker statement that for some C, δ > 0

C/nδ ≥ lim inf
V ↑Zd

µV (|CV (i, η)| > n)
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is not proved except in very special cases. It is believed (see [35]) that for d > 4 the
avalanche exponents are equal to their mean-field value, which is rigorously known to
be δ = 1/2.

However, power-law decay of certain special correlation functions is rigorously
known. An example is (see later on, or [12])

lim
V ↑Zd

(µV (I(η(x) = 1)I(η(0) = 1))− µV (I(η(x) = 1))µV (I(η(0) = 1))) ' C|x|−2d

(3.44)
The reason for that is that one can explicitly compute all the limits showing up in
this expression. This is a kind of “good luck”, because the question whether the limit

lim
V ↑Zd

µV (I(η(0) = 2)

exists has been open for about fifteen years after the discovery of (3.44). Now
we know that the limit exists, but we don’t have a clue of its value except in d = 2.
Similarly, the correlation of the indicator of having height 2 in dimension two is
expected to decay as (log |x|2)/|x|4, but this is a non-rigorous computation based on
conformal field theory see [33].

Avalanches turn out to be rather complicated objects. An interesting finding of
Priezzhev was that avalanches can be decomposed in a sequence of simpler events,
called waves.

Start from some initial η ∈ Ω and add to 0. Then proceed as follows. First
topple the site where you added (if necessary) and all the other sites except the site
where you added (0): there you just stack the grains which are arriving. In that
process every site topples at most once. Indeed, the site where you added topples
at most once by definition. Its neighbors can not topple more than once, because in
order to become unstable for a second time, they have to receive grains from all their
neighbors. However, by assumption they do not receive grains from 0, so they are
unstable at most once. Continuing this argument, one sees that the neighbors of the
neighbors of 0 can topple at most once, etc. This first sequence of topplings is called
the first wave. The set of sites toppled in this procedure is called the support of the
first wave.

If at the end of the first wave the site at which the wave began (where sand was
added) is still unstable, then we topple that site a second time, and obtain “the second
wave”. The following lemma shows that the “wave” clusters are simply connected.
For a subset V ⊆ Zd we say that V is simply connected if the subset V ⊆ Rd obtained
by “filling the squares” in V is simply connected. This means that V does not contain
holes, or more formally that every loop can be continuously contracted to a point.

Lemma 3.45. The support of a wave in in a recurrent configuration is simply con-
nected.

Proof. We prove the statement for the first wave. Suppose the support of the first
wave contains a maximal (in the sense of inclusion) hole ∅ 6= H ⊆ V . By hypothesis,
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all the neighbors of H in V which do not belong to H have toppled once. The toppling
of the outer boundary gives an addition to the inner boundary equal to λH(x) at site
x, where λH(x) is the number of neighbors of x in V , not belonging to H. But
addition of this to ηH leads to one toppling at each site x ∈ H, by recurrence of ηH .
This is a contradiction because we supposed that H 6= ∅, and H is not contained in
the support of the wave. After the first wave the volume V \{x} contains a recurrent
configuration ξV \{x} i.e., recurrent in that volume V \ {x}. Suppose that the second
wave contains a hole, then this hole has to be a subset of V \ {x}, and arguing as
before one discovers that the subconfiguration ξH cannot be recurrent.

3.7 Height one and weakly allowed clusters

In this section we follow [26] to compute

lim
V ↑Z2

µV (I(η(0) = 1)) =
2

π2
(1− 2

π
) (3.46)

The original idea comes from [12]. The probability of several other special local events
can be computed in the thermodynamic limit with this method, which is called “the
Bombay trick”.

If a configuration η ∈ R has height one at the origin, then in the burning algo-
rithm, all lattice sites neighboring the origin will have to be burnt before the origin can
be burnt. Let us call e1, e2,−e2,−e1 the neighbors of the origin. Consider the toppling
matrix ∆′ constructed from ∆ as follows. ∆′

00 = 1, ∆′
e2,e2

= ∆′
−e1,−e1

= ∆′
−e2,−e2

= 3,
∆′

e2,e1
= ∆′

e1,−e1
= ∆′

e1,−e2
= 0. All other ∆′

ij = ∆ij. We can visualize this mod-
ification of the toppling matrix as cutting certain edges incident to the origin, and
correspondingly putting the matrix element of that edge zero, keeping maximal height
(∆′

ii) equal to the number of neighbors in the new lattice.

Suppose now that a configuration with height 1 at 0 can be burnt. Then it is
easy to see that the same configuration can be burnt with the new matrix ∆′ and
vice versa: every burnable stable configuration in the model with toppling matrix ∆′

corresponds to a burnable configuration with height one in the original model (using
the same order of burning). It is important that ∆′ differs from ∆ in a finite number
of matrix elements not depending on the volume V ⊆ Zd. The number of recurrent
configurations in the model with toppling matrix ∆′ is equal to det(∆′) = det(∆(I +
GB)), where Bij = 0 except for B00 = −3, Be2,e2 = B−e1,−e1 = B−e2,−e2 = −1,
B0,e2 = Be2,0 = B−e2,0 = B0,−e2 = B0,−e1 = B−e1,0 = 1, i.e., the non-zero elements
form a 4 × 4 matrix. Therefore only four columns of the product GB are non-zero
and the computation of the determinant det(I +GB) reduces to the computation of
the four by four determinant

det(I+GB) = det

I +


G00 Ge2,0 Ge2,0 Ge2,0

Ge2,0 G00 Ge2,e2 G−e1,0

Ge2,0 Ge2,e2 G00 Ge2,e2

Ge2,0 G−e1,0 Ge2,e2 G00



−3 1 1 1
1 −1 0 0
1 0 −1 0
1 0 0 −1




(3.47)
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Where we used the symmetry G(x, y) = G(y, x) of the Green function in replacing
G(−e2, 0) by G(e2, 0). Since we are in dimension d = 2, we should take care now about
taking the infinite-volume limit because the “bare” Green functions are diverging.
However the limit

lim
V ↑Zd

(GV (x, y)−GV (0, 0)) = a(x, y) (3.48)

is well-defined. Moreover we have the explicit values, see [12], [37]

a(1, 0) = a(0, 1) = a(−1, 0) = a(0,−1) = −1/4

a(−1, 1) = a(1, 1) = a(1,−1) = a(−1,−1) = −1/π (3.49)

Computing the determinant in (3.47) and taking the infinite-volume limit gives

lim
V ↑Z2

µV (I(η0 = 1)) = 2(2a(1, 1)− 1)(a(1, 1))2 = 2(π − 2)/π3 (3.50)

We remark here that the modification ∆′ of the matrix ∆ counting the number of
recurrent configurations with height one at 0 is not unique. E.g. the matrix ∆′′

00 = 0,
∆′′

0e = 0, ∆′′
ee = 1 for |e| = 1, and all other ∆′′

ij = ∆ij would also do. However for that
modification one has to compute a 6× 6 determinant.

Similarly one can compute the probability that sites 0 and i both have height one.
This gives rise to

µV (I(η0 = 1)I(ηi = 1)) = det(I +GB̃) (3.51)

where B̃ is an 8× 8 matrix having two blocks of the previous B matrix. Define (G)00

to be the matrix 
G00 Ge2,0 Ge2,0 Ge2,0

Ge2,0 G00 Ge2,e2 G−e1,0

Ge2,0 Ge2,e2 G00 Ge2,e2

Ge2,0 G−e1,0 Ge2,e2 G00


used in the computation of the height one probability. Similarly

(G)0i =


G0i Ge2,i Ge2,i Ge2,i

Ge2,i G0i Ge2,e2+i G−e1,i

Ge2,i Ge2,e2+i G0i Ge2,e2+i

Ge2,i G−e1,i Ge2,e2+i G0i



(G)i0 =


Gi0 Gi+e2,0 Gi+e2,0 Gi+e2,0

Gi+e2,0 Gi0 Gi+e2,e2 Gi−e1,0

Gi+e2,0 Gi+e2,e2 Gi0 Gi+e2,e2

Gi+e2,0 Gi−e1,0 Gi+e2,e2 Gi0


and

(G)ii =


Gii Gi+e2,i Gi+e2,i Gi+e2,i

Gi+e2,i Gii Gi+e2,e2+i Gi−e1,i

Gi+e2,i Gi+e2,e2+i Gii Gi+e2,e2+i

Gi+e2,i Gi−e1,i Gi+e2,e2+i Gii


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Then the desired probability can be written as

µV (I(η0 = 1)I(ηi = 1)) = det(I +GB) = det

(
I +

(
(G)00B (G)0iB
(G)i0B (G)iiB

))
(3.52)

The computation of this determinant is straightforward but a bit tedious without a
computer. The main conclusion is that as |i| → ∞,

lim
V ↑Zd

µV (I(η0 = 1)I(ηi = 1))− (µV (I(η0 = 1)))2 ' 1/|i|4 (3.53)

where by an ' bn we mean that an/bn → 1.

It is easy to see that this behavior arises from the products of matrix elements of
(G)0i and (G)i0 arising from the development of the determinant in (3.52). Exactly
the same computation can be done in higher dimensions d ≥ 3 (where the Green’s
function does not diverge in the infinite-volume limit) giving rise to the decay

lim
V ↑Zd

µV (I(η0 = 1)I(ηi = 1))− (µV (I(η0 = 1)))2 ' 1/|i|2d (3.54)

So this is our first explicit computation showing the presence of power-law decay of
correlations in this model.

Certain higher order correlations can also be computed. The general structure of
what can be computed is the probability of those local configurations which can be
counted by a finite perturbation of the toppling matrix ∆. A subconfiguration (W, ηW )
is called weakly allowed if diminishing with one unit one of the heights in ηW leads
to a forbidden subconfiguration. Weakly allowed configurations have the property
that in the burning algorithm they will be burnt “in the last stage”. Therefore a
local modification of the matrix ∆ in the sites of the support W can be found, and
the computation of the probability of the occurrence of ηW is analogously reduced to
the computation of a finite determinant. Here are three examples of weakly allowed
subconfigurations.

2 1

2 2 1

1
2 3 1

Here are some of the probabilities of weakly allowed clusters

lim
V ↑Z2

µV (η0 = 1, ηe1 = 2, η2e1 = 2) =
9

32
− 9

π
+

47

2π2
− 48

π3
+

32

π4

lim
V ↑Z2

µV (η0 = 1, η−e1 = 2, η−e1−e2 = 2) = −81

14
+

525

π
− 1315

π2
+

60076

9π3

− 503104

27π4
+

257024

9π5
− 1785856

81π6
+

524288

81π7

More can be found in [26].
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4 Towards infinite-volume: the basic questions

In the previous subsection we showed how to compute probabilities of several sub-
configurations in the thermodynamic limit. The computation of

lim
V ↑Z2

µV (η0 = k) (4.1)

for k = 2, 3, 4 is still possible explicitly, but already requires a “tour de force” per-
formed in a seminal paper of Priezzhev [34]. For d > 2 the height probabilities
2, . . . , 2d cannot be computed explicitly, and probabilities of more complicated local
events cannot be computed explicitly either (not even for Z2).

However the interesting features of this model, like power-law decay of correlations,
avalanche tail distribution, etc., are all statements about the large volume behavior.
A natural question is therefore whether the thermodynamic limit

lim
V ↑Zd

µV (4.2)

exists as a weak limit (we will define this convergence more accurately later on).
Physically speaking this means that enlarging the system more and more leads to
converging probabilities for local events, i.e., events like η(x1) = k1, . . . η(xn) = kn.
A priori this is not clear at all. Usually, e.g. in the context of models of equilibrium
statistical mechanics, existence of the thermodynamic limit is based on some form of
locality. More precisely existence of thermodynamic limits in the context of Gibbs
measures is related to “uniform summability” of the “local potential”. This “uniform
locality” is absent in our model (the burning algorithm is non-local, and application
of the addition operator can change the configuration in a large set).

Let us now come to some more formal definitions. For V ⊆ Zd a finite set we
denote by ΩV = {1, . . . 2d}V the set of stable configurations in V . The infinite-
volume stable configurations are collected in the set Ω = {1, . . . , 2d}Zd

. We will
always consider Ω with the product topology. Natural σ-fields on Ω are FV = σ{ψx :
η → ηx, x ∈ V }, and the Borel-σ-field F = σ (∪V⊆ZdFV ). If we say that µ is a
measure on Ω we always mean a measure defined on the measurable space (Ω,F).
For a sequence aV indexed by finite subsets of Zd and with values in a metric space
(X, d) we say that aV → a if for every ε > 0 there exists V0 such that for all V ⊃ V0

finite, d(aV , a) < ε. Remind that Ω with the product topology is a compact metric
space. An example of a metric generating the product topology is

d(η, ξ) =
∑
x∈Zd

2−|x||η(x)− ξ(x)| (4.3)

where for x = (x1, . . . , xd) ∈ Zd, |x| =
∑d

i=1 |xi|.
A function f : Ω → R is said to be local if there exists a finite set V such that

f(ηV ξV c) = f(ηV ζV c) for all η, ξ, ζ, i.e., the value of the function depends only of
the heights at a finite number of sites. Of course a local function can be viewed as
a function defined on ΩV if V is large enough. Local functions are continuous and
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the set of local functions is uniformly dense in the set of continuous functions (by
Stone-Weierstrass theorem). So in words, continuity of a function f : Ω → R means
that the value of the function depends only weakly on heights far away (uniformly in
these far-away heights).

Definition 4.4. Let (µV )V⊆Zd be a collection of probability measures on ΩV and µ a
probability measure on Ω. We say that µV converges to µ if for all local functions f

lim
V ↑Zd

µV (f) = µ(f) (4.5)

Remark 4.6. If for all local functions the limit in the lhs of (4.5) exists, then by
Riesz representation theorem, this limit indeed defines a probability measure on Ω.

We denote by RV the set of recurrent (allowed) configurations in finite volume
V ⊆ Zd. The set R ⊆ Ω is the set of allowed configurations in infinite-volume, i.e.,

R = {η ∈ Ω : ∀V ⊆ Zd finite , ηV ∈ RV } (4.7)

For η ∈ Ω we define ax,V :
ax,V η = (ax,V ηV )ηV c (4.8)

For a measure µ concentrating on R we say that ax,V → ax µ-a.s. if there exists a
set Ω′ ⊆ Ω with µ(Ω′) = 1 such that for all η ∈ Ω′, ax,V η converges to a configuration
ax(η) (in the metric (4.3)) as V ↑ Zd. If ax,V → ax µ a.s., then we say that the
infinite-volume addition operator ax is well-defined µ-almost surely. It is important
to realize that we cannot expect ax,V η to converge for all η ∈ R. For instance consider
the maximal configuration (in d = 2 e.g.) ηmax ≡ 4. Then it is easy to see that ax,V η
does not converge: taking the limit V ↑ Zd along a sequence of squares or along a
sequence of triangles gives a different result. Since we will show later on that we
have a natural measure µ on R, we can hope that “bad” configurations like ηmax are
exceptional in the sense of the measure µ.

We now present a list of precise questions regarding infinite-volume limits.

1. Do the stationary measures µV = 1
|RV |

∑
η∈RV

δη converge to a measure µ as

V ↑ Zd, concentrating on R ? Is the limiting measure µ translation invariant,
ergodic, tail-trivial ?

2. Is ax well-defined µ-a.s. ? Is µ invariant under the action of ax ? Does abelian-
ness still hold (i.e., axay = ayax on a set of µ-measure one) ?

3. What remains of the group structure of products of ax in the infinite volume ?
E.g., are the ax invertible (as measurable transformations) ?

4. Is there a natural stationary (continuous time) Markov process {ηt : t ≥ 0} with
µ as an invariant measure ?

5. Has this Markov process good ergodic properties ?
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Regarding question 4, a natural candidate is a process generated by Poissonian
additions. In words it is described as follows. At each site x ∈ Zd we have a Poisson
process Nϕx

t with intensity ϕx, for different sites these processes are independent.
Presuppose now that questions 1-2 have a positive answer. Then we can consider the
formal product ∏

x∈Zd

aNϕx
t

x (4.9)

More precisely we want conditions on the addition rates ϕx such that

lim
V ↑Zd

∏
x∈V

aNϕx
t

x (η)

exists for µ almost every η ∈ R (or preferably even for a bigger class of initial
configurations η ∈ Ω). It turns out that a constant addition rate will not be possible
(for the non-dissipative model). A sufficient condition is (as we will prove later)∑

x∈Zd

ϕxG(0, x) <∞ (4.10)

where G(0, x) is the Green function of the lattice Laplacian on Zd. This implies that
for questions 4-5, we have to restrict to transient graphs (i.e., d ≥ 3). We remark
here that probably the restriction d ≥ 3 is of a technical nature, and a stationary
dynamics probably exists also in d = 2, but this is not proved. On the other hand,
we believe that the condition (4.10) is necessary and sufficient for the convergence of
the formal product (4.9). Results in that direction are presented in the last section
of these notes.

4.1 General estimates

Suppose that we have solved problem 1 from our list in the previous section, i.e., we
know that µV converges to µ. Then we can easily solve problem 2.

Proposition 4.11.

Suppose that µV converges to µ in the sense of definition 4.4. Suppose that d ≥ 3.
Then ax = limV ↑Zd ax,V is µ-almost surely well-defined. Moreover there exists a µ-
measure one set Ω′ ⊆ R such that for all η ∈ Ω′, for all V ⊆ Zd finite and nx ≥ 0,
x ∈ V the products

∏
x∈V a

nx
x (η) are well-defined.

a−1
x = limV ↑Zd a−1

x,V is µ-almost surely well-defined. Moreover there exists a µ-measure

one set Ω′ ⊆ R such that for all η ∈ Ω′, for all V ⊆ Zd finite and nx ≥ 0, x ∈ V the
products

∏
x∈V a

−nx
x (η) are well-defined.

Proof. Let us prove that ax is µ-almost surely well-defined. The other statements of
the proposition will then follow easily.

Call NV (x, y, η) the number of topplings at y needed to stabilize η + δx in the
finite volume V (so throwing away the grains falling off the boundary of V ).
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It is easy to see that for V ′ ⊃ V and all y ∈ Zd, NV (x, y, η) ≤ NV ′(x, y η) (this
follows from abelianness). Therefore we can define N(x, y, η) = limV ↑Zd NV (x, y, η)
(which is at this stage possibly +∞). Clearly NV (x, ·, η) is only a function of the
heights η(z), z ∈ V , and thus it is a local function of η.

Moreover, we have, µV (NV (x, y, η)) = GV (x, y) (see (2.21), (3.34)). Therefore,
using that µV → µ,∫

dµ(N(x, y, η)) =

∫
dµ( lim

V ↑Zd
NV (x, y, η)) = lim

V

∫
dµ(NV (x, y, η))

= lim
V

lim
W

∫
dµW (NV (x, y, η))

≤ lim
W

∫
dµW (NW (x, y, η)) = lim

W
GW (x, y) = G(x, y) (4.12)

where we used d ≥ 3, so that G(x, y) <∞ (this works in general for transient graphs).

This proves that N(x, y, η) is µ-a.s. well-defined and is an element of L1(µ) (so in
particular finite, µ-a.s.). Therefore we can define

ax(η) = η + δx −∆N(x, ·, η) (4.13)

Then we have ax = limV ax,V µ-almost surely, so ax is well-defined µ-a.s.

Let us now prove the a.s. existence of inverses a−1
x . In finite volume we have, for

η ∈ RV

a−1
x,V η = η − δx + ∆nV

x (·, η) (4.14)

where now nV
x (y, η) denotes the number of “untopplings” at y in order to make η− δx

recurrent. Upon an untoppling of a site y, the site y receives 2d grains and all
neighbors z ∈ V of y lose one grain. Upon untoppling of a boundary site some grains
are gained, i.e., the site receives 2d grains but only the neighbors in V lose one grain.

The inverse a−1
x,V can be obtained as follows. If η− δx is recurrent (∈ RV ), then it

is equal to a−1
x,V η. Otherwise it contains a FSC with support V0. Untopple the sites of

V0. If the resulting configuration is recurrent, then it is a−1
x,V η. Otherwise it contains

a FSC with support V1, untopple V1, etc. It is clear that in this way one obtains a
recurrent configuration a−1

x,V η such that (4.14) holds. Integrating (4.14) over µV gives

µV (nV
x (y, η)) = GV (x, y) (4.15)

Proceeding now in the same way as with the construction of ax, one obtains the
construction of a−1

x in infinite volume. The remaining statements of the proposition
are obvious.

The essential point in proving that ax is well-defined in infinite volume is the fact
that the toppling numbers N(x, y, η) are well-defined in Zd, by transience.

For x ∈ Zd and η ∈ R, we define the avalanche initiated at x by

Av(x, η) = {y ∈ Zd : N(x, y, η) > 0} (4.16)
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This is possibly an infinite set, e.g. if η is the maximal configuration. In order to
proceed with the construction of a stationary process, we need that µ is invariant
under the action of the addition operator ax. This is the content of the following
proposition.

Proposition 4.17. Suppose that avalanches are almost surely finite. Then we have
that µ is invariant under the action of ax and a−1

x .

Proof. Let f be a local function. We write, using invariance of µW under the action
of ax,W : ∫

fdµ−
∫
axfdµ

=

(∫
(axf − ax,V f)dµ

)
+

(∫
(ax,V f)dµ−

∫
(ax,V f)dµW

)
+

(∫
(ax,V f)dµ−

∫
(ax,Wf)dµW

)
+

(∫
fdµW −

∫
fdµ

)
:= AV +BV,W + CV,W +DW (4.18)

For ε > 0 given, using that ax,V → ax, A can be made smaller than ε/4 by choosing
V large enough. The second and the fourth term B and D can be made smaller than
ε/4 by choosing W big enough, using µW → µ, the fact that f is local and the fact
that for fixed V , ax,V f is also a local function. So the only problematic term left is
the third one. If ax,V 6= ax,W , then the avalanche is not contained in V . Therefore

CV,W ≤ 2‖f‖∞µW (Av(x, η) 6⊆ V )

Notice that for fixed V , the event Av(x, η) 6⊆ V is a local event (depends only on
heights in V together with its exterior boundary). Therefore, we can choose W big
enough such that

µW (Av(x, η) 6⊆ V )− µ(Av(x, η) 6⊆ V ) < ε/8

and by the assumed finiteness of avalanches, we can assume that we have chosen V
large enough such that

µ(Av(x, η) 6⊆ V ) < ε/8

Since ε > 0 was arbitrary, and f an arbitrary local function, we conclude that µ is
invariant under the action of ax.

By the finiteness of avalanches, for µ almost every η ∈ R, there exists V = V (η)
such that ax,V (η) = ax,V (η)(η) for all V ⊃ V (η). It is then easy to see that a−1

x (η) =
a−1

x,V (η) for all V ⊃ V (η). One then easily concludes the invariance of µ under a−1
x .

4.2 Construction of a stationary Markov process

In this subsection we suppose that µ = limV ↑Zd exists, and that d ≥ 3, so that we
have existence of ax and invariance of µ under ax. In the next section we will show
how to obtain this convergence µV → µ.
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The essential technical tool in constructing a process with µ as a stationary mea-
sure is abelianness. Formally, we want to construct a process with generator

Lf(η) =
∑

x

ϕx(axf − f) (4.19)

where axf(η) = f(axη). For the moment don’t worry about domains, etc. For a finite
volume V , the generator

LV f(η) =
∑
x∈V

ϕx(axf − f) (4.20)

defines a bounded operator on the space of bounded measurable functions. This is
simply because ax are well-defined measurable transformations. Moreover it is the
generator of a pure jump process, which can explicitly be represented by

ηV
t =

∏
x∈V

aNϕx
t

x (η) (4.21)

where Nϕx
t are independent (for different x ∈ Zd) Poisson processes with rate ϕx.

The Markov semigroup of this process is

SV (t) = etLV f =
∏
x∈V

eϕx(ax−I)t (4.22)

Notice that since µ is invariant under ax, it is invariant under SV (t) and SV (t) is
a semigroup of contractions on Lp(µ) for all 1 ≤ p ≤ ∞. We are interested in the
behavior of this semigroup as a function of V .

Theorem 4.23. Suppose that (4.10) is satisfied. Then, for all p > 1, and every
local function f , SV (t)f is a Lp(µ) Cauchy net, and its limit S(t)f := limV ↑Zd SV (t)f
extends to a Markov semigroup on Lp(µ).

Proof. We use abelianness and the fact that SV (t) are Lp(µ) contractions to write,
for V ⊆ W ⊆ Zd

‖SV (t)f − SW (t)f‖p = ‖SV (t)(I − SW\V (t))f‖p

= ‖SV (t)

∫ t

0

SW\V (s)(LW\V f)ds‖p

≤
∫ t

0

‖SW\V (s)(LW\V f)‖pds

≤ t‖LW\V f‖p (4.24)

Now, suppose that f is a local function with dependence set Df .

|LW\V f | ≤
∑

x∈W\V

ϕx|(axf − f)|

≤
∑

x∈W\V

2ϕx‖f‖∞I(∃y ∈ Df : N(x, y, η) > 0) (4.25)
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Where Df is the union of Df with its external boundary. Hence

‖LW\V f‖p ≤ 2‖f‖∞

∥∥∥∥∥∥
∑

x∈W\V

ϕxI(∃y ∈ Df : N(x, y, η) > 0)

∥∥∥∥∥∥
p

≤ 2‖f‖∞
∑

x∈W\V

ϕxµ({η : ∃y ∈ Df : N(x, y, η) > 0})

≤ 2‖f‖∞
∑

x∈W\V

ϕx

∑
y∈Df

G(x, y) (4.26)

This converges to zero as V,W ↑ Zd by assumption (4.10) (remember that Df is a
finite set).

Therefore, the limit
S(t)f = lim

V ↑Zd
SV (t)f (4.27)

exists in L∞(µ) for all f local and defines a contraction. Therefore it extends to the
whole of L∞(µ) by density of the local functions. To verify the semigroup property,
note that

‖S(t+ s)f − S(t)(S(s)f)‖ = lim
W↑Zd

lim
V ↑Zd

‖SV (t+ s)f − SW (t)SV (s)f‖

= lim
W↑Zd

lim
V ↑Zd

‖SV (s)(SV (t)− SW (t))f‖

≤ lim
W↑Zd

lim
V ↑Zd

‖(SV (t)− SW (t))f‖ = 0 (4.28)

It is clear that S(t)1 = 1, and S(t)f ≥ 0 for f ≥ 0, since for all V ⊆ Zd these hold
for SV (t), i.e., S(t) is a Markov semigroup.

So far, abelianness delivered us a simple proof of the fact that under (4.10) we have
a natural candidate semigroup with stationary measure µ. Kolmogorov’s theorem
gives us the existence of a Markov process with semigroup S(t). The following explicit
representation can be used in order to show that this process has a decent (cadlag)
version with paths that are right-continuous and have left limits.

Theorem 4.29. Let the addition rate satisfy (4.10). Denote by P the joint distri-
bution of the independent Poisson processes Nϕx

t . Then µ × P almost surely, the
product ∏

x∈V

aNϕx
t

x η (4.30)

converges as V ↑ Zd to a configuration ηt ∈ R. The process {ηt : t ≥ 0} is a version
of the process with semigroup S(t) defined in Theorem 4.23, i.e., for all t ≥ 0, η ∈ Ω′,
with µ(Ω′) = 1,

S(t)f(η) = Eηf(ηt) (4.31)

Moreover this version concentrates on D([0,∞),R).
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As a corollary of this theorem, one recovers the generator of the semigroup.

Proposition 4.32. Define

Bϕ = {f ∈ L1(µ) :
∑
x∈Zd

ϕx

∫
|axf − f |dµ <∞} (4.33)

For ϕ satisfying (4.10) all local functions are in Bϕ. For f ∈ Bϕ, the expression

Lf =
∑
x∈Zd

(axf − f) (4.34)

is well-defined, i.e., the series converges in Lp(µ) (for all 1 ≤ p ≤ ∞) and moreover,

lim
t↓0

S(t)f − f

t
= Lf (4.35)

in Lp(µ).

The following theorem shows that we can start the process from a measure stochas-
tically below µ. We remind this notion briefly here, for more details, see e.g. [24]
chapter 2. For η, ξ ∈ Ω we define η ≤ ξ if for all x ∈ Zd, ηx ≤ ξx. Functions f : Ω → R
preserving this order are called monotone. Two probability measures ν1, ν2 on Ω are
ordered (notation ν1 ≤ ν2) if for all f monotone, the expectations are ordered, i.e.,
ν1(f) ≤ ν2(f). This is equivalent with the existence of a coupling ν12 of ν1 and ν2

such that
ν{(η, ξ) : η ≤ ξ} = 1

Theorem 4.36. Let ν ≤ µ, and P be as in Theorem 4.29. Then, ν×P almost surely

the products
∏

x∈V a
Nϕx

t
x (η) converge, as V ↑ Zd, to a configuration ηt. {ηt, t ≥ 0} is

a Markov process with initial distribution ν.

Proof. For V ⊆ Zd finite and η ∈ Ω′, we define

ηV
t =

∏
x∈V

aNϕx
t

x (η) (4.37)

Then we have the relation

ηV
t = η +N t

V −∆nV
t (η) (4.38)

where NV
t denotes (Nϕx

t )x∈V , and nV
t collects for all sites in Zd the number of top-

plings caused by addition of NV
t to η. Since η ∈ Ω′, these numbers are well-defined.

Moreover for η ∈ Ω′, the toppling numbers are non-decreasing in V and converge as
V ↑ Zd to their infinite-volume counterparts nt which satisfy

ηt = η +N t −∆nt(η) (4.39)

For all V and η ≤ ξ it is clear that nV
t (η) ≤ nV

t (ξ). Choose now ν12 to be a coupling
of ν and µ such that ν12(η1 ≤ η2) = 1. Clearly, η1 belongs to Ω′ with ν12 probability
one. Therefore for ν12 almost all η1, the limit limV ↑Zd nV

t (η1) = (η1)t is well-defined,
and the corresponding process ηt, starting from η = η1 is then defined via (4.39).
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A trivial example of a possible starting configuration is the minimal configura-
tion η ≡ 1. Less trivial examples are measures concentrating on minimal recurrent
configurations (i.e., minimal elements of R).

Remark 4.40. In general we do not know whether νS(t) converges to µ as t → ∞,
unless, as we will see later, ν is absolutely continuous w.r.t. µ. With respect to that
question, it would be nice to find a “successfull” coupling, i.e., a coupling Pζ,ξ of two
versions of ηt, starting from ζ, ξ such that limt→∞ Pζ,ξ(ζV (t) = ξV (t)) = 1 for all
finite V ⊆ Zd. Less ambitious but also interesting would be to obtain this result for
ζ ∈ Ω′ and ξ = axζ. This would yield that all limiting measures limn→∞ νS(tn) along
diverging subsequences tn ↑ ∞ are ax-invariant. Uniqueness of ax-invariant measures
can then possibly be obtained by showing that µ is a Haar measure on some decent
group consisting of products of ax.

5 Infinite volume limits of the dissipative model

As an example of “the dissipative case”, we consider the toppling matrix defined
∆xx = 2d+γ with γ ∈ N and ∆xy = −1 for xy nearest neighbors. Upon toppling of a
site x ∈ V each neighbor in V receives a grain, and γ grains are lost. One says that “
a mass γ is added to the massless (critical) model”. Another example is to consider
“stripes”, i.e., Zd×{0, . . . , k} with ∆xx = 2d+1, ∆xy = −1 for x, y nearest neighbors.
In this case only the boundary sites are dissipative but constitute a non-vanishing
fraction of the volume of the whole system. In general we define “dissipativity” by a
condition on the Green’s function.

Definition 5.1. The model with toppling matrix ∆ (indexed by sites in S ) is called
dissipative if the inverse Gxy = ∆−1

xy exists and satisfies

sup
x∈S

∑
y∈S

Gxy <∞ (5.2)

This means that the “random walk associated to ∆” is almost surely killed. E.g.
for the case ∆xx = 2d+ γ, one can interpret this as connecting every site x ∈ Zd with
γ links to an extra site “∗” and running a simple symmetric random walk on Zd∪{∗}
killed upon hitting ∗. This random walk has a lifetime τ with finite exponential
moments, i.e., E(eετ ) <∞ for ε > 0 small enough, and thus (5.2) is clearly satisfied.

In the “critical case” where
∑

y G(x, y) = ∞, condition (4.10) cannot hold for a
constant addition rate ϕ, i.e., in that case the addition rate ϕ(x) has to depend on
x and has to converge to zero sufficiently fast for x far away. In the dissipative case
constant addition rate is allowed. In fact, addition ⊕ of recurrent configurations (as
introduced in finite volume in section 3.4) turns out to be well-defined (in infinite
volume) as we will see later on. This gives us a group structure and the group R,⊕
will turn out to be compact. That is the ideal context for applications of theory of
random walks on groups, as is e.g. treated in [20]. In what follows we will always
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denote by S the infinite set of vertices where the toppling matrix is defined so e.g.
S = Zd, S = Zd × {0, . . . , k}, etc.

In the following lemma we show that certain additions are defined in infinite
volume for every recurrent configuration. This is different from the non-dissipative
case where such additions would only be well-defined µ-a.s.

Lemma 5.3. Suppose that n : S → Z satisfies

B := sup
y∈S

∑
x∈S

|nx|G(x, y) <∞ (5.4)

then
Ω(n) = {η ∈ R : ∃m ∈ NS,∃ξ ∈ R : η + n = ξ + ∆m} = R (5.5)

Proof. Clearly, Ω(n) is a subset of µ measure one, because the product∏
x

anx
x

is almost surely well-defined if n satisfies (5.4). This follows from the fact that addition
according to n satisfying (5.4) causes µ-a.s. a finite number of topplings at every site
x ∈ S.

Therefore Ω(n) is a dense subset of R. We will prove that Ω(n) is a closed set.
This implies that Ω(n) = R. Let ηk → η be a sequence of elements of Ω(n). Then
there exist mk ∈ NS, ξk ∈ R such that

ηk + n = ξk + ∆mk (5.6)

This gives mk = G(ηk +n−ξk). Since G is a bounded operator on l∞(S) by (5.2), and
ηk(x), ξk(x), x ∈ S are bounded by a constant, we have by (5.4) that there exists a
finite C > 0 such that mk(x) ∈ [0, C] for all k, x. Therefore there exists a subsequence
kn ∈ N such that ξkn → ξ, mkn → m as n→∞.

Therefore, taking the limit along that subsequence in (5.6) gives

η + n = ξ + ∆m (5.7)

which shows that η ∈ Ω(n), because ξ ∈ R since R is closed.

In finite volume we had the fact that ξ = η + ∆m for some m ∈ ZV together
with η, ξ ∈ R implies η = ξ. This is not the case anymore in infinite volume. Take
e.g. S = Z × {0, 1} and ∆xx = 4, then the configurations η ≡ 3 and ζ ≡ 4 are both
recurrent and “equivalent” , i.e.,

ζ = η + ∆m (5.8)

where m ≡ 1. This has as a drawback that we can only define addition of two
recurrent configurations modulo this equivalence.
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Definition 5.9. For η, ξ ∈ R we say that η ∼ ξ if there exists m ∈ ZV such that

η = ξ + ∆m (5.10)

Lemma 5.11. The quotient R/ ∼ is a compact set.

Proof. It suffices to show that equivalence classes of ∼ are closed. Denote for η ∈ R,
[η] the corresponding equivalence class. Suppose ξn ∈ [η] for some ξn → ξ. Then for
every n there exist mn ∈ ZS such that

η = ξn + ∆mn (5.12)

As in the proof of lemma 5.3, mn(x) is uniformly bounded in x, n and hence there
exists a sequence kn ↑ ∞ of positive integers, such that along kn, ξkn → ξ, mkn → m.
Taking the limit in (5.12) gives ξ = limn ξn ∈ [η].

Now for η ∈ R, we have proved in lemma 5.3 that the set Ω(η) of those configura-
tions ξ such that ξ + η can be stabilized by a finite number of topplings at each site
is the whole of R. Clearly two “stable versions” of η + ξ are equivalent in the sense
∼. Therefore on R/ ∼ we define

[η]⊕ [ξ] = [S(η + ξ)] (5.13)

where S(η + ξ) is any stable version of η + ξ.

Lemma 5.14. R/ ∼ is a compact topological group.

Proof. We leave the proof as an exercise with the following hint. Show that the class
[η]⊕ [ξ] can be obtained as the set of configurations equivalent with

lim
V ↑S

ηV ⊕ ξV (5.15)

along a suitable subsequence, where ⊕ is defined as usual in finite volume.

We then have the following.

Theorem 5.16. Suppose (5.2) is satisfied. Then there exists a unique measure µ on
R such that µ is invariant under the action of ax. Moreover, µ is the “lifting” of the
unique Haar measure on (R/ ∼,⊕). Finally, the finite volume uniform measures µV

converge to µ in the sense of definition 4.4.

Proof. For the complete proof, we refer to [29]. The proof consists of three parts:

1. Show that for all limit points µ of µV , ax is well-defined µ-a.s. and µ is invariant
under the action of ax. This is easy and based on condition (5.2). Define I to
be the set of limit points of µV .

2. Show that for every µ ∈ I, there exists a µ-measure one set Ωµ such that for
all η ∈ Ωµ, the equivalence class [η] is a singleton.

3. The proof then essentially follows from the uniqueness of the Haar measure on
(R/ ∼,⊕).
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5.1 Ergodicity of the dissipative infinite-volume dynamics

In this section we consider the dissipative case and rate one addition, i.e., the process
with generator

L =
∑
x∈Zd

(ax − I) (5.17)

We furthermore suppose that “every site is dissipative”, i.e., ∆xx = 2d + γ with γ a
strictly positive integer, and ∆xy = −1 for x, y nearest neighbors. The corresponding
Green function then decays exponentially, i.e.,

0 ≤ G(x, y) = ∆−1
xy ≤ Ae−B|x−y| (5.18)

We start this process from a measure ν stochastically dominated by µ; this is well-
defined by Theorem 4.36. We then show

Theorem 5.19. There exists C2 > 0 such that for all local functions f there exists
Cf > 0 with ∣∣∣∣∫ S(t)fdν −

∫
fdµ

∣∣∣∣ ≤ Cfe
−C2t (5.20)

Proof. We start the proof with a simple lemma.

Lemma 5.21. Let A be a self-adjoint invertible bounded operator on a Hilbert space
H, then for all f ∈ H we have the estimate

‖A−1f‖2 ≥ ‖f‖2

‖A‖2
(5.22)

Proof. Suppose ‖f‖ = 1. Use the spectral theorem and Jensen’s inequality to write

‖A−1f‖2 = < A−1f |A−1f >

=

∫
1

λ2
dEf,f (λ)

≥ 1∫
λ2dEf,f (λ)

=
1

‖Af‖2
≥ 1

‖A‖2
(5.23)

We now turn to the proof of the theorem. Fix a local function f with dependence
set Df . The idea is to approximate S(t) by finite volume semigroups, and to estimate
the speed of convergence as a function of the volume. More precisely, we split∣∣∣∣∫ S(t)fdν −

∫
fdµ

∣∣∣∣ ≤ AV
t (f) +BV

t (f) + CV (f) (5.24)
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with

AV
t (f) =

∣∣∣∣∫ S(t)fdν −
∫
SV (t)fdνV

∣∣∣∣ (5.25)

BV
t (f) =

∣∣∣∣∫ SV (t)fdνV −
∫
fdµV

∣∣∣∣ (5.26)

CV (f) =

∣∣∣∣∫ fdµV −
∫
fdµ

∣∣∣∣ . (5.27)

where νV is the restriction of ν to V and

SV (t)f(η) =

∫
f

(∏
x∈V

aNt,x

x,V η

)
dP

for a collection {N t,x : x ∈ Zd} of independent rate one Poisson processes with joint
distribution P. By Theorem 5.16,

lim
V ↑S

CV (f) = 0. (5.28)

For the first term in the right-hand side of (5.24) we write

AV
t (f) =

∣∣∣∣∣
∫ ∫ (

f

(∏
x∈S

aNt,x

x η

)
− f

(∏
x∈V

aNt,x

x,V η

))
dPdν

∣∣∣∣∣ (5.29)

The integrand of the right hand side is zero if no avalanche from V c has influenced
sites of Df during the interval [0, t], otherwise it is bounded by 2‖f‖∞. More precisely,
the difference between the function f evaluated in the two configurations appearing
in (5.29) comes from extra additions in V c which possibly can influence the heights
in Df and boundary topplings where grains are lost (in the second product where we
use ax,V versus kept in the first product where we write ax. Therefore, since N t,x are
rate one Poisson processes:

AV
t (f) ≤ C2‖f‖∞t

∑
y∈Df

∑
x∈V c

G(x, y) (5.30)

The second term in the right hand side of (5.24) is estimated by the relaxation to
equilibrium of the finite volume dynamics. The generator L0

V has the eigenvalues

σ(L0
V ) =

{∑
x∈V

(
exp

(
2πi
∑
y∈V

GV (x, y)ny

)
− 1

)
: n ∈ ZV /∆V ZV

}
(5.31)

The eigenvalue 0 corresponding to the stationary state corresponds to the choice
n = 0. For the speed of relaxation to equilibrium we are interested in the minimum
absolute value of the real part of the non-zero eigenvalues. More precisely:

BV
t (f) ≤ Cf exp(−λV t)
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where

λV = inf
{
|Re(λ)| : λ ∈ σ(L0

V ) \ {0}
}

= 2 inf

{∑
x∈V

sin2

(
π
∑
y∈V

GV (x, y)ny

)
: n ∈ ZV /∆V ZV , n 6= 0

}

by (5.31). Since there is a constant c so that for all real numbers r

sin2(πr) ≥ c(min{|r − k| : k ∈ Z})2

we get∑
x∈V

sin2
(
π((∆V )−1n)x

)
≥ c inf

{
‖(∆V )−1n− k‖2 : n ∈ ZV /∆V ZV , n 6= 0, k ∈ ZV

}
(5.32)

where ‖ · ‖ represents the euclidean norm in ZV that we estimate by

‖(∆V )−1n− k‖2 = ‖(∆V )−1(n−∆V k)‖2 ≥ ‖∆V ‖−2‖(n−∆V k)‖2

Taking the infimum of (5.32) we have

λV ≥ ‖∆V ‖−2κV (5.33)

where
κV = inf{‖∆n− k‖2 : k ∈ ZV , n ∈ ZV /∆ZV , n 6= 0} (5.34)

This is simply the smallest non-zero distance between a point in the lattice ∆ZV and
a point in the lattice ZV , that is, κV = 1. For every regular volume we have

‖∆V ‖ ≤
√

2γ2 + 16d2

This gives
BV

t (f) ≤ Cf exp(−Ct) (5.35)

where C > 0 is independent of V .
The statement of the theorem now follows by combining (5.28), (5.30), (5.35), and
choosing V = Vt such that AVt

t (f) ∨ CVt(f) ≤ exp(−Ct).

Remark 5.36. The particular choice of dissipation is not essential for the ergodic
theorem, but the rate of convergence will of course depend on the addition rate. So
in general we have νS(t) → µ as t → ∞ (in the weak topology) but the speed of
convergence depends on the details of the addition rate, and the decay of the Green
function.

A weaker form of ergodicity is the following

Theorem 5.37. Suppose (5.2) is satisfied. For all addition rates ϕ such that (4.10)
holds, and for all f, g ∈ L2(µ),

lim
t→∞

∫
S(t)fgdµ =

∫
fdµ

∫
gdµ (5.38)
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Proof. Since the generator L =
∑

x ϕ(x)(ax−I) is a normal operator (L∗ =
∑

x ϕ(x)(a−1
x −

I) commutes with L on a common core the set of local functions), (5.38) follows from
ergodicity, i.e., if Lf = 0 then f =

∫
fdµ µ-a.s. Suppose Lf = 0, with f ≥ 0 and∫

fdµ > 0. Then

< Lf |f >=
∑

x

1

2

∫
(axf − f)2 = 0 (5.39)

and hence the probability measure

dνf =
fdµ∫
fdµ

is invariant under the action of ax, and hence under the group action. It is therefore
proportional to the Haar measure, i.e., f is µ-a.s. constant. (Remark that we have
hidden here some harmless back and forth liftings from R to R/ ∼).

Remark 5.40. One can show that in the “bulk” dissipative case, ∆xx = 2d+ γ with
γ a strictly positive integer, and ∆xy = −1 for x, y nearest neighbors, there is also
exponential decay of spatial correlations. More precisely there exists a constant δ > 0
such that for all f, g local function we have

|
∫

(fτxg)dµ−
∫
fdµ

∫
gdµ| ≤ Cf,ge

−δ|x| (5.41)

This is proved for “high dissipation” (γ large depending on d) in [29], using a per-
colation argument, and for all γ > 0 in [19], using the correspondence with spanning
trees.

6 Back to criticality

The essential simplification of the dissipative case is caused by the summable decay
of the Green function. This is not the case anymore if we consider the original critical
model. It is clear that one of the consequences of “non-dissipativity” is that we have
to give up the idea of a group of addition of recurrent configurations (defined on
the whole of R). The reason is that e.g. in d = 2 the configuration of all heights
equal to eight cannot be stabilized (even the configuration of all four except at the
origin height 5 cannot be stabilized). From the work of [23] it follows that the limit
of the neutral elements in finite volume in Z2 is equal to the all-three configuration.
But adding this to any recurrent configuration gives an unstable configuration which
cannot be stabilized.

Let us come back to the basic questions of section 3.1. We start with the following
theorem of [1].

Theorem 6.1. Let µV denote the uniform measure on recurrent configurations RV

in volume V ⊆ Zd. Then for all d ∈ N as V ↑ Zd, µV → µ, in the sense of (4.4).
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We will give the full proof of this theorem in 1 ≤ d ≤ 4 and indicate how the
proof goes in d ≥ 5. For the complete proof we refer to [1]. The basic ingredient is
the existence of the weak infinite-volume limit ν = limΛ↑Zd νΛ of the uniform measure
on rooted spanning trees, and some basic properties of the limiting measure. Let us
first explain this convergence. For a set Λ ⊆ Zd we denote by E(Λ) the set of edges
inside Λ, i.e., those edges e = (xy) such that both vertices x, y ∈ Λ. The rooted
spanning tree measure νΛ is the uniform measure on rooted spanning trees TΛ (as
explained in section ) viewed as a measure on {0, 1}Λ (where value 1 is interpreted as
presence of the edge), i.e., we do not consider the edges of TΛ going to the root ∗. We
say that νΛ → ν, where ν is a probability measure on {0, 1}E(Zd) if for all finite sets
of edges {e1, . . . , ek} the numbers νΛ(ξe1 = 1 = . . . ξek

) converge to the probability
ν(ξe1 = 1, . . . , ξek

= 1). The finite volume measure can be viewed as the distribution
of a subgraph (TΛ, E(TΛ)) of (Λ, E(Λ)), and analogously the infinite-volume measure
ν can be viewed as the distribution of a subgraph of (Zd, E(Zd)) which we will denote
by (T,E(T )).

For an infinite subgraph (T,E(T )) ⊆ (Zd, E(Zd)) we call a path in T a set of
vertices γ = {x1, . . . , xk, . . .} such that for all i, xixi+1 ∈ E(T ). A path is infinite if it
contains infinitely many vertices. Two infinite paths γ, γ′ in T are called equivalent if
the set (γ \γ′)∪ (γ′ \γ) is finite. An end of T is an equivalence class of infinite paths.
The subgraph T is called a tree if it contains no loops and is connected. If it contains
no loops (but is not necessarily connected) it is called a forest. The following theorem
is proved in [32], see also [4] for the last item. In fact much more is proved in these
papers but we summarize in the theorem below the facts we need for the proof of our
theorem 6.1.

Theorem 6.2. The uniform measures on rooted spanning trees νΛ converge to a
measure ν as Λ ↑ Zd. The limiting measure ν is the distribution of the edge set of a
subgraph (T,E(T )) ⊆ (Zd, E(Zd)) which has the following properties

1. For 1 ≤ d ≤ 4, T is ν-almost surely a tree with a single end.

2. For d ≥ 5, T is ν-almost surely a forest with infinitely many components which
all have a single end.

Definition 6.3. Let a probability measure ν be given on AS with S an infinite set,
and A a finite set (think of S = Zd or S = E(Zd), A = {1, . . . , 2d}, A = {0, 1}). A
function f : AS → R is called ν almost local if for all η ∈ AS there exists V (η) ⊆ S
such that ν({η : |V (η)| <∞}) = 1 and such that for all η, ξ ∈ AS,

f(η) = f(ηV (η)ξS\V (η)) (6.4)

In words, the value of f depends only on the coordinates of η in V (η).

This notion of “almost” local will show up naturally if we want to reconstruct the
height variables from a realization of the uniform spanning forest (USF) on Zd, d ≤ 4.
The height will depend on a finite portion of the tree with probability one, but the size
of this portion is not uniformly bounded (the height variable is not a local function).
We can now sketch the proof of theorem 6.1.
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Proof. Suppose we have a rooted spanning tree TΛ in the finite volume Λ. We can
view the tree as a realization of the burning algorithm. The corresponding recurrent
height configuration can be reconstructed if we know the burning times tx for all sites.
The burning time tx is exactly equal to the length of the unique (non-back-tracing)
path from x to the root ∗ (this path is unique if we do not allow back-tracing, i.e.
each edge in the path is traversed at most once). If for a given site x we know the
order of the numbers tx, ty for all neighbors y of x, then we can already determine
the height. E.g. if tx < miny∼x ty this means that the site is burnt only after all its
neighbors, which implies that its height is one. Similarly, given the preference rule we
can reconstruct the height from the ordering of the numbers tx, tyy∼x. Suppose now
a realization of the uniform rooted spanning tree is given as well as a finite number
of sites A = {x1, . . . , xk}. Call Ā the set of sites obtained from A by adding all the
neighbors of A. We suppose that Λ is big enough such that Ā ⊆ Λ. Call ηx(Λ)(TΛ)
the height at site x corresponding to the rooted spanning tree TΛ. For an infinite tree
T , we can reconstruct the height ηx(T ) if the tree has one end. This goes as follows.
If the tree has one end, then all paths starting from x ∈ A or a neighbor y ∼ x and
going to infinity (think of infinity as being the root) coincide from some point a(x)
on, i.e., a(x) is a common ancestor of the set Ā. Consider the subtree TΛ(A) of all
descendents of a(x). This is a finite tree, and the height hx is reconstructed from
the order of the distances from x and his neighbors to a(x). The heights ηx, x ∈ A
are completely determined by the tree TΛ(A). Notice that as long as Λ is finite, it is
possible that a(x) coincides with the root ∗, but the probability of that event under νΛ

will become small as Λ increases. Finally, denote by TΛ(A, η) the edge configuration
of the tree TΛ(A) corresponding to height configuration ηA on A. With the notation
we just introduced we can now write, for fixed finite V0 ⊆ Zd

µΛ(ηA) = νΛ(TΛ(A) = TΛ(A, η))

= νΛ

(
TΛ(A) = TΛ(A, η), TΛ(A) ⊆ V0

)
+ νΛ

(
TΛ(A) = TΛ(A, η), TΛ(A) 6⊆ V0

)
Since the indicator TΛ(A) ⊆ V0 is local, we conclude that

lim sup
Λ↑Zd

µΛ(ηA) ≤ ν
(
TZd(A) = TZd(A, η), TZd(A) ⊆ V0

)
+ ν(TZd(A) 6⊆ V0) (6.5)

and similarly

lim inf
Λ↑Zd

µΛ(ηA) ≥ ν
(
TZd(A) = TZd(A, η), TZd(A) ⊆ V0

)
− ν(TZd(A) 6⊆ V0) (6.6)

Since TZd(A) is ν-almost surely a finite set, we obtain from combining (6.5) and (6.6)
and letting V0 ↑ Zd:

lim
Λ↑Zd

µΛ(ηA) = ν(TZd(A) = TZd(A, η)) (6.7)

which shows the convergence of µΛ to a unique probability measure µ.

For the case d ≥ 5, things become more complicated, because the height at a site
x cannot be recovered from the edge configuration of the spanning forest in infinite
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volume. This is because if x and his neighbors belong to different infinite trees, we
cannot directly order the lengths of the paths going to infinity. The idea now is that
if x and his neighbors belong to r components, then in each component one can look
for a common ancestor of x and the neighbors in that component. The infinite paths
going from the r common ancestors will now have a completely random order. More
precisely, in bigger and bigger volumes, the lengths l1, . . . , lr of the paths from the r
common ancestors to the root will satisfy

νΛ(lσ(1) < lσ(2), . . . < lσ(r)) =
1

r!
+ o(|Λ|)

for every permutation σ : {1, . . . , r} → {1, . . . r}. One can imagine this by realizing
that the paths going to the root behave like (loop-erased) random walkers, so the
hitting times of the boundary of a large set will have a completely random order. This
implies that the height cannot be reconstructed from the edge configuration, but can
be reconstructed if we add extra randomness, corresponding to a random ordering of
the components of the infinite-volume spanning forest. This goes as follows. Given a
realization of the infinite-volume spanning forest, we associate to each component Ti

a uniform random variable Ui on the interval [0, 1]. For different components these
Ui’s are independent. The height at site x can now be reconstructed from the edge
configuration of the spanning forest and these random variables Ui. Within each
component we can order those sites from the set consisting of x and his neighbors
according to the lengths of the paths going to the common ancestor in the given
component. This leads say to the order xi

1 < xi
2 < . . . < xi

ki
within the component

Ti The uniform variables determine an order of the components, or equivalently a
permutation σ : {1, . . . , r} → {1, . . . r}. The final order of x and his neighbors is then
given by

x
σ(1)
1 < x

σ(1)
2 < . . . < x

σ(1)
kσ(1)

< x
σ(2)
1 < x

σ(2)
2 < . . . < x

σ(2)
kσ(2)

< . . . < x
σ(r)
1 < x

σ(r)
2 < . . . < x

σ(r)
kσ(r)

and this order determines the height. We finish here the discussion of the case d ≥ 5;
the complete proof can be found in [1]

6.1 Wilson’s algorithm and two-component spanning trees

In order to obtain more insight in the nature of avalanches, we already mentioned
the idea of decomposing an avalanche into a sequence of waves. We will now obtain a
spanning tree representation of the first wave, and derive from that its a.s. finiteness
in d > 4. The first wave starts upon addition at a site in a recurrent configuration.
For simplicity suppose that the site where a grain is added is the origin. Consider
a finite volume V ⊆ Zd containing 0, and a recurrent configuration ηV ∈ RV . Its
restriction ηV \{0} is recurrent in V \ {0}. Therefore in the burning algorithm applied
to ηV \{0}, all sites will be burnt. We now split this burning procedure in two phases.
In phase one at time T = 0, we burn neighbors of 0 (if possible), and continue at time
T = 1 with neighbors of the sites burnt at time T = 0, and so on until no sites can
be burnt which are neighbors of the previously burnt sites. The set of all sites which
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are burnt in the first phase is the support of the first wave. The second phase of the
burning algorithm then starts from the boundary of V and burns all the sites not
contained in the first wave. The spanning tree representation of both phases gives a
graph with two components: the first (resp. second) component corresponding to the
spanning tree representation of the first (resp. second) phase of the burning algorithm
applied to ηV \{0}. We call this two-component graph the two-component spanning tree
representation of the wave.

Under the uniform measure µV on recurrent configurations in V , this two-component
spanning tree is not uniformly distributed, but we will show that it has a distribution
with bounded density w.r.t. the uniform two-component spanning tree (bounded uni-
formly in the volume V ). Let us first describe the uniform measure on two-component
spanning trees in finite volume V . Consider V0 := V \{0} and the multigraph (V ∗

0 , E
∗)

obtained by adding the additional site ∗ (“root”) and putting αV (x) edges between
sites of the inner boundary and ∗ where

αV0(x) = 2d− {y : y is neighbor of x, y 6∈ V0}

A rooted spanning tree is a connected subgraph of (V ∗, E∗) containing all sites and
no loops. One can split such a spanning tree T in paths going off to ∗ via a neighbor
of the origin (notation T0), and paths going off to ∗ via the boundary of V . With a
slight abuse of words, we call T0 “the component containing the origin”. We will be
interested in the distribution of T0 under the uniform measure on rooted spanning
trees of V0, as V ↑ Zd. Notice that the recurrent configurations ηV0 ∈ RV0 are
in one-to-one correspondence with the rooted spanning trees of V0, and hence the
distribution of the tree T under the uniform measure µV0 on RV0 is uniform. We will
now first show that the distribution of T0 under µV is absolutely continuous w.r.t.
the distribution of T0 under µV0 , with a uniformly (in V ) bounded density.

Lemma 6.8. There is a constant C(d) > 0 such that for all d ≥ 3

sup
V⊆Zd

|RV \{0}|
|RV |

≤ C(d) (6.9)

Proof. By Dhar’s formula,

|RV \{0}| = det(∆V \{0}) = det(∆′
V )

where ∆′
V denotes the matrix indexed by sites y ∈ V and defined by (∆′

V )yz =
(∆V \{0})yz for y, z ∈ V \ {0}, and (∆′

V )0z = (∆′
V )z0 = δ0z. Clearly,

∆V + P = ∆′
V

where P is a matrix which has only non-zero entries Pyz for y, z ∈ N = {u : |u| ≤ 1}.
Moreover, maxy,z∈V Pyz ≤ 2d− 1. Hence

|RV \{0}|
|RV |

=
det(∆V + P )

det(∆V )
= det(I +GV P ),
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where GV = (∆V )−1. Here (GV P )yz = 0 unless z ∈ N . Therefore

det(I +GV P ) = det(I +GV P )u∈N,v∈N (6.10)

By transience of the simple random walk in d ≥ 3, we have supV supy,z GV (y, z) ≤
G(0, 0) <∞, and therefore the determinant of the finite matrix (I +GV P )u∈N,v∈N in
(6.10) is bounded by a constant depending on d.

From this lemma we derive the following.

Proposition 6.11. For all events A depending on heights in V0,

µV (A)

µV0(A)
≤ C (6.12)

Proof. We have, for all σ ∈ ΩV

µV (ηV0 = σV0) =
1

|RV |
|{k ∈ {1, . . . , 2d} : k0(σ)V0 ∈ RV }| ≤ 2d

|RV0|
|RV |

≤ 2dC(d) ≤ C

(6.13)
where C(d) is the constant of lemma 6.8. The statement of the proposition now
follows from the elementary inequality∑n

i=1 xi∑n
i=1 yi

≤ n
max
i=1

xi

yi

for non-negative numbers xi, yi, with
∑n

i=1 xi > 0,
∑n

i=1 yi > 0.

The distribution of T0 under µV is that of the first wave. After the first wave the
restriction of the initial configuration η ∈ RV on V0 is given by

S1
V (η) =

(∏
j∼0

aj,V0

)
(ηV0)

Similarly if there exists a k-th wave, then its result on the restriction ηV0 is given by

Sk
V (η) =

(∏
j∼0

aj,V0

)k

(ηV0)

Denote by Ξk
V he k-th wave in volume V .

We can then write, for a fixed W ⊆ Zd containing the origin,

µV

(
Ξk

V 6⊆ W
)
≤ µV (T V

0 (ηV ) 6⊆ W )

≤ CµV0(T 0
V (Sk−1

V (ηV0)) 6⊆ W )

= CµV0(T 0
V (ηV0) 6⊆ W ) (6.14)

where in the second line we used proposition 6.11 ad in the third line, we used that
µV0 is invariant under the addition operators ax,V0 , x ∈ V0.
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Therefore if we can prove that under the uniform measure on two-component
spanning trees, “the component of the origin” stays almost surely finite, then we
obtain that all waves are finite with probability one (w.r.t. the infinite volume limit
of µV ). Let us denote by ν0

V this uniform measure on two-component spanning trees
of V . We then have the following

Theorem 6.15. 1. For all d ≥ 1 the limit limV ↑Zd ν0
V := ν0 exists

2. Assume d > 4. The “component of the origin” T0 is ν0-almost surely finite.

3. Assume d > 4. Under the infinite-volume limit µ of the uniform measures on
recurrent configurations, all waves are finite with probability one.

We will now proceed by Wilson’s algorithm to generate a sample of ν0. Then
we will give a sketch of proof of item 2 of theorem 6.15. Item 3 follows by previous
considerations from item 2. Item 1 is a standard result of Pemantle.

To define Wilson’s algorithm directly in infinite volume, we assume d ≥ 3. Enu-
merate the sites of Zd \ {0} := {x0, x1, . . . , xn, . . .}. Pick the first point and start
simple random walk killed upon hitting 0. This gives a (possibly infinite) path γ1.
Let LR(γ1) denote its loop-erasure (which is well-defined since the random walk is
transient). Pick a new point x not yet visited by LR(γ1). Start simple random walk
killed upon hitting {0} ∪ LR(γ1). This gives a second path γ2, which we again loop-
erase to generate LR(γ2). Continue this procedure until every point x ∈ Zd \ {0}
has been visited (to be precise this of course requires some limiting procedure which
we will not detail here). The graph which is created by this algorithm, restricted to
Zd \ {0} (but keeping track of the exiting bonds when hitting 0) has distribution ν0.
The component of the origin corresponds to those paths “killed by hitting the origin
or by a path that has been killed by hitting the origin or...”.

We can now give a sketch of the proof of item 2 of theorem 6.15.

Proof. The idea is to make a coupling between ν0 and ν, where ν is the uniform
spanning forest (USF) measure on Zd. In a spanning forest T (distributed according
to ν) we make the convention to direct the edges towards infinity. If two sites x, y
are joined by an directed edge, we say that x is a descendant of y, or y is an ancestor
of x. Put VN := [−N,N ]d ∩ Zd.

Define the event

G(M,N) = {desc(VM ;T ) ⊆ Vn} (6.16)

where desc(V ) denotes the set of descendants of V . Another way to describe the
event G(M,N) is to say that there exists a connected set VM ⊆ D ⊆ VN such that is
no directed edge of from Zd \D to D (there is of course a directed edge from D to
Zd \D).

In [4], theorem 10.1, it is proved that each component of the USF has one end.
This means that for two sites x, y in the same component, the paths going to infin-
ity coincide at some moment (more formally two infinite paths containing x and y
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have infinitely many vertices in common). In particular this implies that the set of
descendant of a given site is always finite. This implies that for all M ≥ 1

lim
N→∞

ν(G(M,N)) = 1 (6.17)

The idea of the proof is then the following: first generate that part of the tree
containing D, then, in the two-component spanning tree, the component of the origin
will be inside D provided no walker used in generating the part that contains D hits
the origin on a loop (because then in the measure ν0, this walker will be killed). If
d > 4 , then ∑

x

G(0, x)2 <∞ (6.18)

which implies that in the simple random walk, with probability one, there exists M0

such that loops containing the origin and a point x with |x| > M0 do not occur.
Therefore by choosing M large enough, with probability arbitrary close to one, the
walks used to generate the part of the tree with distribution ν containing D do not
contain a loop (which is afterwards erased) containing the origin. In that case, the
component of the origin will be enclosed by D and hence be finite.

6.2 A second proof of finiteness of waves

For a finite graph G, we write TG for the uniform spanning tree on the graph G, and
write P to denote its law. Let 0 ∈ Λ ⊆ Zd, d ≥ 1. Let νΛ denote the wired spanning
tree measure in volume Λ. We can think of νΛ in the following way. We add a vertex
δ to Λ, which is joined to each boundary vertex of Λ by the appropriate number of
edges. Denote the graph obtained this way by Λ̃. Then νΛ is the marginal law of TΛ̃

on the “ordinary” edges, that is on edges not touching δ. Introduce another graph
Λ̂ by adding an edge e to Λ̃, between δ and 0. Then the two-component spanning
tree measure ν

(0)
Λ is the marginal law of TΛ̂ conditioned on {e ∈ TΛ̂} on the ordinary

edges. Finally, νΛ is also the marginal law of TΛ̂ conditioned on {e 6∈ TΛ̂}.

Lemma 6.19. Let d ≥ 1. For any finite 0 ∈ Λ ⊆ Zd, νΛ stochastically dominates
ν

(0)
Λ .

Proof. It is shown in [4], Theorem 4.1, that for any finite graph G, e an edge of G
and an increasing event A that ignores the edge e, one has

P[TG ∈ A | e ∈ TG] ≤ P[TG ∈ A]. (6.20)

This in turn implies that

P[TG ∈ A | e 6∈ TG] ≥ P[TG ∈ A]. (6.21)

Now let A be an increasing event on ordinary edges of Λ. Then

ν
(0)
Λ (A) = P(TΛ̂ ∈ A | e ∈ TΛ̂) ≤ P(TΛ̂ ∈ A) ≤ P(TΛ̂ ∈ A | e 6∈ TΛ̂) = νΛ(A). (6.22)
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Taking the weak limits as Λ → Zd, we obtain that for any increasing event A that
only depends on finitely many edges of Zd, we have ν(0)[A] ≤ ν[A]. By Strassen’s
theorem, there is a monotone coupling between ν(0) and ν. Let ν∗ denote the coupling
measure on the space Ω×Ω. Let T0 denote the component of 0 under ν(0), and let T1

denote the union of the other components. (Actually, T1 is a single component, but
we do not need this.)

Proposition 6.23. For d = 3 or 4,

ν(0)[|T0| = ∞] = 0. (6.24)

Proof. By transience of the simple random walk, it is not hard to see that when d ≥ 3,
T1 contains an infinite path π1 ν

(0)-a.s. On the event {|T0| = ∞}, there is an infinite
path π0 inside T0, that is of course disjoint from π1. By the coupling, we get two
disjoint infinite paths in the uniform spanning forest. When d ≤ 4, this is almost
surely impossible, because there is only one component, and that has one end.

Here is a proof that works for all d ≥ 3.

Proposition 6.25. For all d ≥ 3,

ν(0)[|T0| = ∞] = 0. (6.26)

Proof. Assume that ν(0)(|T0| = ∞) = c1 > 0, and we try to reach a contradiction.
We consider the construction of the configuration under ν(0) via Wilson’s algorithm.
Suppose that the first random walk, call it S(1), starts from x 6= 0. Then we have

ν(0)(x 6↔ 0) = P(S(1) does not hit 0) = 1− G(x, 0)

G(0, 0)
→ 1 as |x| → ∞. (6.27)

In particular, there exists an x ∈ Zd, such that

ν(0)(|T0| = ∞, x 6↔ 0) ≥ c1/2. (6.28)

Fix such an x. Let B(x, n) denote the box of radius n centred at x. Fix n0 such
that 0 ∈ B(x, n0), and 0 is not a boundary point of B(x, n0). By inclusion of events,
(6.28) implies

ν(0)(0 ↔ ∂B(x, n), x 6↔ 0) ≥ c1/2 (6.29)

for all n ≥ n0. For fixed n ≥ n0, let y1 = x, and let y2, . . . , yK be an enumeration of
the sites of ∂B(x, n). We use Wilson algorithm with this enumeration of sites. Let S(i)

and τ (i) denote the i-th random walk and the corresponding hitting time determined
by the algorithm. We use these random walks to analyze the configuration under
both ν(0) and ν.

The event on the left hand side of (6.29) can be recast as

{τ (1) = ∞, ∃ 2 ≤ j ≤ K such that τ (j) <∞, S
(j)

τ (j) = 0}, (6.30)
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and hence this event has probability at least c1/2. On the above event, there is a
first index 2 ≤ N ≤ K, such that the walk S(N) hits B(x, n0) at some random time
σ, where σ < τ (N). Therefore this latter event, call it A, also has probability at least
c1/2. Let p = p(x, n0) denote the minimum over z ∈ ∂B(x, n0) of the probability that
a random walk started at z hits x before 0 without exiting B(x, n0). Clearly, p > 0.

Let B denote the subevent of A on which after time σ, the walk S(N) hits the loop-
erasure of S(1) before hitting 0 (and without exiting B(x, n0)). We have P(B |A) ≥ p.
Now we regard the random walks as generating ν. By the definition of N , on the event
A∩B, the hitting times τ (1), . . . , τ (N), have the same values as in the construction for
ν(0). Moreover, on A∩B, the tree containing x has two disjoint paths from ∂B(x, n0)
to ∂B(x, n): one is part of the infinite path generated by S(1), the other part of the
path generated by S(N). Therefore, the probability of the existence of two such paths
is at least p(c1/2), for all n ≥ n0. However, this probability should go to zero, because
under ν, each tree has one-end almost surely. This is a contradiction, proving the
Proposition.

7 Stabilizability and “the organization of self-organized

criticality”

In this section we introduce the notion of “stabilizability”, and show that in some sense
the stationary measure of the ASM defines a transition point between stabilizable and
non-stabilizable measures. It is based upon material of [30] and [14].

We denote by H the set of infinite height configurations, i.e., H = {1, 2, 3, . . .}Zd
.

Pt = Pt(H) denotes the set of translation invariant probability measure on the Borel-
σ-field of H. As before, Ω denotes the set of stable configurations.

For η ∈ H V ⊆ Zd, we define Nη
V to be the column collecting the toppling numbers

at each site x ∈ V , when we stabilize ηV in the finite volume V , i.e., grains are lost
when boundary sites of V topple. We then have the relation

ηV −∆VN
η
V = SV (η) (7.1)

where SV denotes stabilization in V , i.e., SV (η) = (SV (ηV ))ηV c , and (∆V )xy =
∆xy11x,y∈V .

Remember that for fixed η ∈ H and x ∈ Zd, Nη
V (x) is non-decreasing in V .

Definition 7.2. We call η ∈ H stabilizable if for all x ∈ Zd, limV ↑Zd Nη
V (x) < ∞.

We denote by S the set of all stabilizable configurations. Notice that since Nη
V are

(Borel) measurable functions of η, S is a (Borel) measurable set.

A probability measure ν on H is called stabilizable if ν(S) = 1.

It is clear that S is a translation invariant set, therefore if ν is an ergodic probability
measure (under spatial translations), then ν(S) ∈ {0, 1}.

The set of stabilizable configurations clearly satisfies the following monotonicity
property: if η ∈ S, ζ ≤ η then ζ ∈ S.
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Therefore the following “critical density” is well-defined:

Definition 7.3. The critical density for stabilizability is defined as

ρc = sup{ρ : ∃µ ∈ Pt :

∫
η(0)dµ = ρ, µ(S) = 1}

= inf{ρ : ∃µ ∈ Pt :

∫
η(0)dµ = ρ, µ(S) = 0} (7.4)

Definition 7.5. A configuration η ∈ H is weakly stabilizable if there exists Nη :
Zd → N, and ξ ∈ Ω such that

η −∆Nη = ξ (7.6)

Remark 7.7. It is clear that stabilizability implies weak stabilizability, but the con-
verse is not clear because it is not obvious that a given stabilizing toppling vector
n ∈ NZd

can be realized as a (possibly infinite) sequence of legal topplings.

Let us denote by ρZd the expected height of the stationary measure of the ASM,
in the thermodynamic limit.

We have the following theorem

Theorem 7.8. 1. For all d ≥ 1, ρc = d + 1. In d = 1, ρc = 2 = ρZd, while for
d = 2, ρc < ρZd.

2. If ν is a translation invariant ergodic probability measure on H with ν(η0) =
ρ > 2d, then ν is not weakly stabilizable.

Proof. We start with item 2 Suppose that there exist m ∈ NZd
such that

η −∆m = ξ (7.9)

with ξ stable and η a sample from ν. Let Xn be the position of simple random walk
(starting at the origin at time 0) at time n. From (7.9) it follows that

m(Xn)−m(0)− 1

2d

n−1∑
k=1

(ξ(Xk)− η(Xk)) (7.10)

is a mean-zero martingale. Therefore taking expectations w.r.t. the random walk

1

n
(E0(m(Xn))−m(0))) =

1

n
E0

(
1

2d

n−1∑
k=1

(ξ(Xk)− η(Xk))

)
(7.11)

By stability of ξ

1

n

(
n−1∑
k=1

(ξ(Xk)− η(Xk))

)
≤ 2d− 1

n

n−1∑
k=1

(η(Xk)) (7.12)
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Therefore, using dominated convergence and ν(η(0)) = 2d+ 2dδ, for some δ > 0

0 ≤ lim inf
n→∞

1

n
(E0(m(Xn))−m(0))

≤ lim sup
n→∞

1

n
E0

(
1

2d

n−1∑
k=1

(ξ(Xk)− η(Xk))

)

≤ 1− E0

(
1

2d
lim

n→∞

1

n

n−1∑
k=1

η(Xk)

)
< −δ (7.13)

where in the last step we used te ergodicity of the “scenery process” {τXk
η : k ∈ N},

which follows from the ergodicity of ν (under spatial translations). Cleary, (7.13) is
a contradiction.

Next, we prove item 1. Suppose that ν is not stabilizable. Since for every x ∈ Zd,
Nη

V (x) goes to infinity as V ↑ Zd, it follows that the restriction of η to some fixed
volume V0 must be recurrent in V0 (i.e., an element of RV0). By definition of R, this
implies that ν(R) = 1. We can then use the following lemma of which item one comes
from [10], and item 2 follows straightforwardly from item 1.

Lemma 7.14. 1. Suppose that ξ ∈ RV is minimally recurrent, i.e., diminishing
the height by one at any site x ∈ V creates a forbidden subconfiguration. Then
the total number of grains

∑
x∈V ξ(x) equals the number of sites + the number

of edges in V .

2. Suppose that ν is a translation invariant probability measure concentrating on
minimally recurrent configurations, i.e., such that ν-a.s. every restriction ηV0 is
minimally recurrent in V0. Then

∫
η0 dν = d+ 1

This implies that ν has a minimal expected height equal to d+ 1. We then show
that there exist non stabilizable measures with density d+ 1 + δ for every δ > 0. We
give the proof for d = 2, the generalization to arbitrary d is obvious.

Let ν be a stabilizable measure concentrating on R such that ν(η0) = d + 1.
Let νp denote the Bernoulli measure on {0, 1}Z with νp(ω0 = 1) = p. Let ω, ω′ be
independently drawn from νp. Consider the random field X(x, y) = ω(x) + ω′(y).
Let ν ⊕ νp denote the distribution of the pointwise addition of η and X, where η is
drawn from ν and X is independent of η as defined before. In X we almost surely
have infinitely many rectangles R1 . . . Rn, . . . surrounding the origin where at least
“two grains are added” on the corner sites and one grain on the other boundary sites.
Therefore, since ν(R) = 1, upon stabilization in a set V ⊃ Rn, we have at least n
topplings at the origin. Hence, ν ⊕ νp is not stabilizable, and by choosing p, q small
enough, the expected height can be chosen less than or equal to d + 1 + δ. The
inequality ρc = 3 < ρZ2 follows from [34].

Remark 7.15. 1. If in the definition of the critical density for stabilizability one
restricts to product measures (in stead of general translation invariant mea-
sures), then it is believed that ρc equals the expected height in the stationary
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measure of the ASM, in the thermodynamic limit. In that sense ρc would be a
“real critical point” (transition point between stabilizable and non-stabilizable).

2. The proof of item two of theorem 7.8 gives the result that if

η −∆m = ξ (7.16)

then the (height) density of η cannot be larger that the density of ξ. I.e., one
cannot by topplings “sweep away” a density of grains. However, the equality
(7.16) does not imply that the densities of η and ξ are equal. Indeed, consider
in d = 2, m(x, y) = x2 + y2, then we have

2−∆m = 6

i.e., mass can be “obtained from infinity”.

3. In d = 1, ρc = 2 is also the expected height of the stationary measure of the ASM
in the thermodynamic limit. For ρ = 2 one can have both stabilizability and non-
stabilizability, e.g., 313131313131313 . . . and its shift 131313131313131313 . . .
are not stabilizable, whereas 2222 . . . is stable and hence trivially stabilizable.

The following notion of metastability formalizes the idea that there are triv-
ially stabilizable measures such as the Dirac measure concentrating on the maxi-
mal configuration, which however have the property of “being at the brink of non-
stabilizability”. For µ and ν two probability measure on H, we denote by µ⊕ ν the
distribution of the pointwise addition of two independent configurations drawn from
ν, resp. µ.

Definition 7.17. A probability measure ν on H is called metastable if it is stabilizable
but ν ⊕ δ0 is not stabilizable with non-zero probability, .i.e, ν ⊕ δ0(S) < 1.

The following theorem gives a sufficient condition for metastability. We only give
the idea of the proof, its formalization is straightforward.

Theorem 7.18. Suppose that ν is a stationary and ergodic probability measure on
Ω, concentrating on the set of recurrent configurations R. Define Iη(x) = 11η(x)=2d and
call ν̃ the distribution of Iη. Suppose that ν̃ dominates a Bernoulli measure Pp with
p sufficiently close to one such that the 1’s percolate and the zeros do not percolate.
Then ν is metastable.

Idea of proof. Suppose that we have a “sea” of height 2d and “islands” of other
heights, and such that the configuration is recurrent. Suppose the origin belongs to
the sea, and we add a grain at the origin. The first wave must be a simply connected
subset of Zd because the configuration is recurrent. It is clear that the “sea” of height
2d is part of the wave, and therefore every site is contained in the wave (because if an
island is not contained then the wave would not be simply connected). So in the first
wave every site topples exactly once, but this implies that the resulting configuration
is exactly the same. Hence we have infinitely many waves.

The following theorem shows that the thermodynamic limit of the stationary
measures of the ASM is in some sense “maximally stabilizable”.
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Theorem 7.19. Let d > 4. Let µ denote the thermodynamic limit of the stationary
measures of the ASM. Let ν be ergodic under translations such that ν(η0) > 0. Then
µ⊕ ν is almost surely not stabilizable.

Proof. We have to prove that µ⊕ν is not stabilizable for any ν stationary and ergodic
such that ν(η(0)) > 0. A configuration drawn from µ⊕ ν is of the form η + α, where
η is distributed according to µ and α independently according to ν.

Suppose η + α can be stabilized, then we can write

ηV + αV −∆Vm
1
V = ξ1

V (7.20)

with m1
V ↑ m1

Zd as V ↑ Zd. We define m2,V ∈ NZd
by

η + α0
V −∆m2,V = ξ2,V (7.21)

where α0
V : Zd → N is defined α0

V (x) = α(x)11x∈V . In words this means that we add
according to α only in the finite volume V but we stabilize in infinite volume. The
fact that m2,V is finite follows from the fact that the addition operators ax and finite
products of these are well-defined in infinite volume on µ almost every configuration.
Since for W ⊃ V

α0
V ≤ α0

W (7.22)

and m1
V does not diverge, it is clear that m2,V is well-defined, by approximating the

equation (7.21) in growing volumes. Moreover, for Λ ⊆ Zd fixed, it is also clear
that (m2,V )Λ and (m1

V )Λ will coincide for V ⊃ V0 large enough. Otherwise, the
stabilization of ηV + αV would require additional topplings in Λ for infinitely many
V ’s, which clearly contradicts that m1

V converges (and hence remains bounded). But
then we have that for V large enough, (ξ1

V )Λ and ξ2,V
Λ coincide. For any V , the

distribution of ξ2,V is µ, because µ is stationary under the infinite-volume addition
operators. Therefore, we conclude that the limit limV ξ

1
V = limV ξ

2
V is distributed

according to µ. Hence, passing to the limit V ↑ Zd in (7.21) we obtain

η + α−∆m = ξ (7.23)

where η and ξ have the same distribution µ, and where m ∈ NZd
. Let {Xn, n ∈ N}

be simple random walk starting at the origin. Then for any function f : Zd → R,

Mn = f(Xn)− f(X0)−
1

2d

n−1∑
i=1

(−∆)f(Xi) (7.24)

is a mean zero martingale. Applying this identity with f(x) = mx, using (7.23) gives
that

Mn = m(Xn)−m(X0) +
n−1∑
i=1

(η(Xi) + α(Xi)− ξ(Xi)) (7.25)

is a mean zero martingale (w.r.t. the filtration Fn = σ(Xr : 0 ≤ n), so η and ξ are
fixed here). This gives, upon taking expectation over the random walk,

1

n
(E0(m(Xn))−m(0)) =

1

n
E0

(
n−1∑
i=1

(ξ(Xi)− η(Xi)− α(Xi))

)
(7.26)
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Using now that m(0) < ∞ by assumption, the ergodicity of µ and ν, and the fact
that both ξ and η have distribution µ, we obtain from (7.26) upon taking the limit
n→∞ that

0 ≤ lim
n→∞

1

n
(E0(m(Xn))−m(0)) = lim

n→∞
E0

(
1

n

n−1∑
i=1

(ξ(Xi)− η(Xi)− α(Xi))

)
= −α

(7.27)
which is a contradiction.

Open question
Are there probability measures ν ∈ Pt such that ν(η0) > ρZd and ν is not metastable
? This question is closely related to the question whether the density is the only
relevant parameter in separating metastable measures from stabilizable measures.
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