Cluster expansions: Overview and new convergence results I. General set-up, main examples and basic expressions

> Roberto Fernández CNRS - Université de Rouen

> > IHP, November 2008

Part I

General set-up and main examples

Most of the course will deal with "hard-core" polymers (also called *level 3*)

The set-up is more general that what it seems

Starting point: basic issue, graph-theoretical set-up, major examples

Graphs

Examples

Geom

Outline

Basic set-up

Graph-theoretical framework

Benchmark examples

Loss networks Statistical mechanics Lattice Gases Low-temperature expansions

Geometrical polymer models

Geom

The basic (Level 3) setup

Goal: To study systems of objects constrained only by a "non-overlapping" condition

Countable family ${\mathcal P}$ of objects: polymers, animals, $\ldots,$ characterized by

• An *incompatibility* constraint:

$$\begin{array}{ll} \gamma \nsim \gamma' \\ \gamma \sim \gamma' \end{array} \quad \text{if } \gamma, \gamma' \in \mathcal{P} \qquad \begin{array}{c} \text{incompatible} \\ \text{compatible} \end{array}$$

For simplicity: each polymer incompatible with itself $(\gamma \nsim \gamma, \forall \gamma \in \mathcal{P})$

• A family of *activities* $\boldsymbol{z} = \{z_{\gamma}\}_{\gamma \in \mathcal{P}} \in \mathbb{C}^{\mathcal{P}}$.

Geom

The basic ("finite-volume") measures Defined, for each *finite* family $\mathcal{P}_{\Lambda} \subset \mathcal{P}$, by weights

$$W_{\Lambda}(\{\gamma_1, \gamma_2, \dots, \gamma_n\}) = \frac{1}{\Xi_{\Lambda}(z)} z_{\gamma_1} z_{\gamma_2} \cdots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

for $n \geq 1$ $\gamma_1, \gamma_2, \ldots, \gamma_n \in \mathcal{P}_{\Lambda}$, and $W_{\Lambda}(\emptyset) = 1/\Xi_{\Lambda}$, where

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

Λ = some label, often finite subset of a countable set
As compatible polymers are necessarily different,

$$\frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} [\bullet] \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}} = \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}_{\Lambda}} [\bullet] \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

(different situation below for cluster expansion)

Geom

The questions:

- ► Existence of the limit $\mathcal{P}_{\Lambda} \to \mathcal{P}$ ("thermodynamic limit")
- ▶ Properties of the resulting measure (mixing properties, dependency on parameters,...)

• Asymptotic behavior of Ξ_{Λ}

Motivation

Immediate:

- Physics: Grand-canonical ensemble of polymer gas with activities z_γ and hard-core interaction
- Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_γ

Less immediate:

- Statistical mechanical models at high and low temperatures are mapped into such systems
- ▶ More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- ► Zeros of the partition functions Ξ_{Λ} (phase transitions, chromatic polynomials, Lovász lemma)

Geom

Graph-theoretical framework

Equivalently, consider the *incompatibility graph* $\mathcal{G} = (\mathcal{P}, \mathcal{E})$ Unoriented graph with:

- ► Vertices = polymers
- ► Edges = incompatible pairs

$$\gamma \nsim \gamma' \quad \text{iff} \quad \{\gamma, \gamma'\} \in \mathcal{E} \quad \text{or} \quad \gamma \leftrightarrow \gamma'$$
 (1)

(contrast!)

E is arbitrary; vertices can be of infinite degree (polymers incompatible with infinitely many other polymers)

WARNING! There will be other graphs (up to three levels)

Polymers as lattice gases

In this graph-theoretical framework:

- ▶ Incompatible polymers = neighboring vertices
- ▶ Polymer system = hard-core gas in a complicated lattice
- Neighborhood of γ_0 :

$$\begin{array}{lll} \mathcal{N}_{\gamma_0}^* & = & \{\gamma \in \mathcal{P} : \gamma \nsim \gamma_0\} \\ \mathcal{N}_{\gamma_0} & = & \mathcal{N}_{\gamma_0}^* \setminus \{\gamma_0\} \end{array}$$

► Independent vertices = non-neighboring vertices

► Independent sets = sets formed by independent vertices Thus,

$$\Xi_{\Lambda}(oldsymbol{z}) \;=\; \sum_{\Gamma \subset \mathcal{P}_{\Lambda} top ext{independent}} oldsymbol{z}^{\Gamma} \;=\; \prod_{\gamma \in \Gamma} z_{\gamma}$$

Examples ••••••••

Loss networks

Example: Single-call loss networks

Definition

- $\mathcal{P} = \text{finite subsets of } \mathbb{Z}^d$ —the *calls*
- A call γ is attempted with Poissonian rates z_{γ}
- ▶ Call succeeds if it does not intercept existing calls
- Once established, calls have an exp(1) life span

Remarks

- ► Basic measures are invariant for the finite-region process $(\gamma \nsim \gamma' \iff \gamma \cap \gamma' \neq \emptyset)$
- ► Thermodynamic limit: infinite-volume process
- ▶ Discrete point process with hard-core conditions

Statistical mechanics

Statistical mechanical lattice models

Their ingredients are:

- ▶ Lattice \mathbb{L} countable set of sites (e.g. \mathbb{Z}^d)
- ► Single-site space (E, \mathcal{F}, μ_E) with natural measure structure (e.g. counting measure if E countable, Borel if $E \subset \mathbb{R}^d$)
- Configuration space $\Omega = E^{\mathbb{L}}$, with product measure
- Interaction $\Phi = \{\phi_B : B \subset \mathbb{L}\}$ where $\phi_B = \phi_B(\omega_B)$
 - Bonds are sets B such that $\phi_B \neq 0$
 - Exclusions:
 - $\Phi_B(\omega_B) = \infty$ (physicist)
 - $\Omega_{\text{allowed}} \subset \Omega \text{ (math-phys)}$
 - Two body: $\phi_B = 0$ unless $B = \{x, y\}$

Graphs

Examples

Geom

Statistical mechanics

Statistical mechanical measures

Their finite-volume versions are defined by

▶ Hamiltonians: For $\Lambda \subset \subset \mathbb{L}$, and boundary condition σ

$$H_{\Lambda}(\omega \mid \sigma) = \sum_{B \subset \Lambda} \phi_B(\omega_{\Lambda} \sigma)$$

Boltzmann Probability densities (weights)

$$W_{\Lambda}(\omega \mid \sigma) = rac{\exp\{-\beta H_{\Lambda}(\omega \mid \sigma)\}}{Z_{\Lambda}^{\sigma}}$$

 $(\omega, \sigma \in \Omega_{\text{all}})$ with

$$Z_{\Lambda}^{\sigma} = \int_{\Omega_{\text{all}}} \exp\{-\beta H_{\Lambda}(\omega \mid \sigma)\} \bigotimes_{x \in \Lambda} \mu_{E}(d\omega_{x})$$

 $(\beta = \text{inverse temperature})$

Graphs

Examples

Geom

Statistical mechanics

Warning on notation

• Often β is absorbed:

$$\beta \phi_B \rightarrow \phi_B \quad , \quad \beta H_\Lambda \rightarrow H_\Lambda$$

▶ Also, single site terms $\phi_{\{x\}}(\omega_x)$ can be absorbed in μ_E

$$\mu_E(d\omega_x) \rightarrow \mu_x(d\omega_x) = e^{-\beta\phi_{\{x\}}(\omega_x)}\mu_E(d\omega_x)$$

Graphs

Examples

Geom

Lattice Gases

Example zero: Hard-core lattice gases

 \mathbb{L} =vertices of a graph (eg. \mathbb{Z}^d), $E = \{0, 1\}$ (\mathcal{F} =discrete, μ_E =counting)

$$\phi_B(\omega) = \begin{cases} -u\,\omega_x & \text{if } B = \{x\} \\ \infty & \text{if } B = \{x,y\} \text{ n.n.} \\ 0 & \text{otherwise} \end{cases}$$

Let

$$\Gamma(\omega) = \{x : \omega_x = 1\}$$

Then, for $\Lambda \subset \subset \mathbb{L}$,

$$W_{\Lambda}(\omega \mid 0) = \frac{1}{Z_{\Lambda}^{0}} \prod_{x \in \Gamma(\omega_{\Lambda})} e^{\beta u} \prod_{x,y \in \Gamma(\omega_{\Lambda})} \mathbb{1}_{\{x \neq y\}}$$

Lattice Gases

Graphs

Examples

Geom

Lattice gas = polymer model

This is a polymer model with

$$\blacktriangleright \mathcal{P} = \{ \text{vertices of } \mathbb{L} \}$$

•
$$x \not\sim y$$
 iff x and y are graph neighbors

$$\triangleright \ z_x = \mathrm{e}^{\beta u}$$

(For Sokal-like people *all* polymer models are of this type)

Low-temperature expansions

Ising model at low temperatures $\mathbb{L} = \mathbb{Z}^d, E = \{-1, 1\}, (\mathcal{F} = \text{discrete}, \mu_E = \text{counting})$

$$\phi_B(\omega) = \begin{cases} -J \,\omega_x \omega_y & \text{if } B = \{x, y\} \text{ n.n.} \\ 0 & \text{otherwise} \end{cases}$$

Write $-J \omega_x \omega_y = -J (\omega_x \omega_y - 1) - J$ Call a bond $B = \{x, y\}$ excited or frustrated if $\omega_x \omega_y = -1$:

$$H_{\Lambda}(\omega \mid +) = 2J F_{\Lambda}(\omega) - JN_{\Lambda};$$

$$F_{\Lambda}(\omega) = \#\{B \text{ frustrated} : B \cap \Lambda \neq \emptyset\}$$
$$N_{\Lambda} = \#\{B : B \cap \Lambda \neq \emptyset\}$$

As N_{Λ} is independent of ω

$$W_{\Lambda}(\omega \mid +) = \frac{\exp\{-2\beta J F_{\Lambda}(\omega)\}}{\sum_{\sigma_{\Lambda}} \exp\{-2\beta J F_{\Lambda}(\sigma)\}}$$

Graphs

Examples

Geom

Low-temperature expansions

Contour representation

- Place a plaquette (segment) orthogonally at the midpoint of each frustrated bond
- ► These plaquettes form a family of disjoint closed connected surfaces (curves)
- ▶ Each such closed surface is a *contour*. Denote

$$\mathcal{C}_{\Lambda} = \{ \text{contours } \gamma : \gamma \subset \Lambda \}$$

- Contours are disjoint: $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$
- Each ω is in one-to-one correspondence with a *compatible* family of contours $\Gamma(\omega)$

Graphs

Examples

Geom

Low-temperature expansions

Contour polymer model

$$\exp\{-2\beta J F_{\Lambda}(\omega)\} = \exp\{-\sum_{\gamma \in \Gamma(\omega)} 2\beta J |\gamma|\}$$
$$= \prod_{\gamma \in \Gamma(\omega)} z_{\gamma}$$

with $z_{\gamma} = \exp\{-2\beta J |\gamma|\}$. Hence

$$W_{\Lambda}(\omega \mid +) = \frac{1}{\Xi_{\Lambda}} \prod_{\gamma \in \Gamma(\omega)} z_{\gamma}$$

with

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{C}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

Graphs

Examples

Geom

Low-temperature expansions

Generalization: LTE for Ising ferromagnets

 \mathbb{L} =any, $E = \{-1, 1\}$, interactions

$$\phi_B(\omega) = -J_B \, \omega^B \quad \text{, with } J_B \ge 0$$

 $[\omega^B := \prod_{x \in B} \omega_x]$. Without loss, free boundary conditions:

$$H_{\Lambda}(\omega) = -\sum_{B\in\mathcal{B}_{\Lambda}} J_B \, \omega^B$$

with

$$\mathcal{B}_{\Lambda} = \left\{ B : J_B > 0 \text{ and } B \subset \Lambda \right\}$$

[for $H_{\Lambda}(\cdot | +)$ use \mathcal{B}^+_{Λ} , etc]

Graphs

Examples

Geom

Low-temperature expansions

Generalized contours

Write

$$H_{\Lambda}(\omega) = -\sum_{B \in \mathcal{B}_{\Lambda}} J_B(\omega^B - 1 + 1)$$

= $-\sum_{B \in \mathcal{B}_{\Lambda}} J_B(\omega^B - 1) - \sum_{B \in \mathcal{B}_{\Lambda}} J_B$

- A bond B is excited or frustrated if $\omega^B = -1$
- $\Gamma(\omega_{\Lambda}) = \text{set of frustrated bonds in } \Lambda$
- A *contour* is a maximal connected component of Γ (connexion = intersection)
- C_{Λ} = set of possible contours in Λ

Graphs

Examples

0.00

Geom

Low-temperature expansions

Contours and probability weights

$$W_{\Lambda}(\omega) = \frac{\prod_{\gamma \in \Gamma(\omega_{\Lambda})} e^{-\beta E(\gamma)}}{\widetilde{Z}_{\Lambda}}$$

where $E(\gamma) = \sum_{B \in \gamma} 2J_B$ and
 $\widetilde{Z}_{\Lambda} = \sum_{\sigma_{\Lambda}} \prod_{\gamma \in \Gamma(\sigma_{\Lambda})} e^{-\beta E(\gamma)} = \sum_{\Gamma \in \mathcal{C}_{\Lambda}} N_{\Gamma} \prod_{\gamma \in \Gamma} e^{-\beta E(\gamma)}$

with $N_{\Gamma} = \{\omega_{\Lambda} : \Gamma(\omega_{\Lambda}) = \Gamma\}$

We compute N_{Γ} with a little help from group theory

Graphs

Examples

Geom

Low-temperature expansions

Contours and group theory

•
$$\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$$
 iff $\omega^B = \sigma^B$ for all $B \in \mathcal{B}_{\Lambda}$

• $\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$ iff $(\omega \cdot \sigma)^B = 1$ for all $B \in \mathcal{B}_{\Lambda}$, where

$$(\omega \cdot \sigma)_x = \omega_x \sigma_x$$

Site-wise product

• $\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$ iff $\omega = \chi \cdot \sigma$ for some $\chi \in \mathcal{S}_{\Lambda}$ with

$$\mathcal{S}_{\Lambda} = \left\{ \chi : \chi^B = 1 \text{ for all } B \in \mathcal{B}_{\Lambda} \right\}$$

Symmetry group

 $\blacktriangleright N_{\Lambda} = |\mathcal{S}_{\Lambda}|$

Graphs

Examples

Geom

Low-temperature expansions

Ferromagnetic LT polymer model

Finally,

$$Z_{\Lambda} = |\mathcal{S}_{\Lambda}| \; \Xi_{\Lambda}^{\scriptscriptstyle \mathrm{LT}}$$

with

$$\Xi_{\Lambda}^{\rm LT}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{C}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

for

$$z_{\gamma} = \exp\left\{-2\beta \sum_{B \in \gamma} J_B\right\}$$

 $(|z_{\gamma}| \text{ small for } \beta \text{ large}) \text{ and }$

$$\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$$

Geometrical polymer models

Polymers of previous examples (loss networks, low-T contours) are points of a set

These are the original polymer models of Gruber and Kunz Formally, a geometrical polymer model is defined by:

- ▶ A set \mathbb{V} (eg. possible calls, surfaces)
- A family \mathcal{P} of finite subsets of \mathbb{V} (eg. connected)
- Activity values $(z_{\gamma})_{\gamma \in \mathcal{P}}$
- The relation $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$

In this case $\mathcal{P}_{\Lambda} = \{ \gamma \in \mathcal{P} : \gamma \subset \Lambda \}, \Lambda \subset \subset \mathbb{V}$

General geometrical polymers

Vertex-set polymers

- $\mathbb{V}=\text{vertex}$ set of a graph (lattice, dual lattice)
 - Polymers are defined through connectivity properties (graph-connected)
 - Compatibility determined by graph distances (overlapping, being neighbors or sufficiently close)

WARNING! Second-level graph. On top: incompatibility graph

Decorated geometrical polymers

 $\gamma = (\underline{\gamma}, D_{\gamma})$ where

- $\underline{\gamma}$ = finite subset of \mathbb{V} ("base")
- ► D_{γ} some additional attribute (color, "decoration")
- ▶ In this case: $x \in \gamma$ means $x \in \gamma$, etc

Partitions 000	Free energy	CE	Strategy 00	Conseq 0000000	Ind

Part II

Expanding the log of partition functions

Let us spend some time discussing

- ▶ Why issues reduce to the study partition functions
- ► Information yielded by expansions of logs of part. functions We leave for later the convergence problem.

Partitions 000	Free energy	CE	Strategy 00	Conseq 0000000	Ind

Outline

Partition functions and correlations

- Correlation functions
- Characteristic/moment-generating functions
- Free energy and phase transitions
- Definition of cluster expansion
- Classical cluster-expansion strategy
 - Ratios and derivatives $\tilde{\alpha}$
 - Convergence policy

Consequences and explicit expressions

Free-energy expansion Expansion for correlations Mixing properties Central Limit Theorem

Inductive strategy (Kotecký-Preiss, Dobrushin)

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	0000000	

Ratios of partition functions

Partition functions play a central role. Three reasons:

- ▶ Correlations are ratios of partition functions
- ▶ So are characteristic and moment-generating functions
- (Complex) zeros of partition functions related to phase transitions, coloring problems, etc

Partitions	Free energy	CE	Strategy	Conseq	Ind
● ○ ○			00	0000000	
Correlation fund	ctions				

Polymer correlation functions

Let

• $\operatorname{Prob}_{\Lambda}$ the basic measure in \mathcal{P}_{Λ}

• $\gamma_1, \ldots, \gamma_k$ mutually compatible polymers in \mathcal{P}_{Λ} Then

$$\operatorname{Prob}_{\Lambda}(\{\gamma_1,\ldots,\gamma_k \text{ are present}\}) = z_{\gamma_1}\cdots z_{\gamma_k} \frac{\Xi_{\Lambda\setminus\{\gamma_1,\ldots,\gamma_k\}^*}}{\Xi_{\Lambda}}$$

where

 $\Xi_{\Lambda \setminus \{\gamma_1, \dots, \gamma_k\}^*} = \text{partition function of polymers in } \mathcal{P}_{\Lambda}$ compatible with $\gamma_1, \dots, \gamma_k$

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	0000000	
Correlation funct	ions				

Statistical mechanical correlations

Likewise, for the stat-mech models, let

▶ $\operatorname{Prob}_{\Lambda}(\cdot \mid \sigma)$ be the measure in Λ with b.c. σ

 $\blacktriangleright \ A_\Delta$ be an event depending only on spins in $\Delta \subset \Lambda$ Then

$$\operatorname{Prob}_{\Lambda}(A_{\Delta} \mid \sigma) = \int \mathbb{1}_{\{A_{\Delta}\}}(\omega_{\Delta}) \operatorname{e}^{-\beta H_{\Delta}(\omega_{\Delta})} \frac{Z_{\Lambda \setminus \Delta}^{\omega_{\Delta} \sigma_{\mathbb{L} \setminus \Lambda}}}{Z_{\Lambda}^{\sigma}} \bigotimes_{x \in \Delta} \mu_{E}(d\omega_{x})$$

where

 $Z_{\Lambda \setminus \Delta}^{\omega_{\Delta} \sigma_{\mathbb{L} \setminus \Lambda}} = partition function in \Lambda \setminus \Delta with condition$ $\omega in \Delta and \sigma outside \Lambda$

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	0000000	
Characteristic/r	noment-generating fu	inctions			

Characteristic/moment-generating functions Let $\alpha : \mathcal{P} \to \mathbb{R}$ and

$$S_{\Lambda}(\gamma_1, \dots, \gamma_n) = \sum_{i=1}^n \alpha(\gamma_i)$$

for $\{\gamma_1, \ldots, \gamma_n\} \subset \mathcal{P}_{\Lambda}$. Hence $E_{\Lambda}(e^{\xi S_{\Lambda}})$ equals

$$\frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}_{\Lambda}} z_{\gamma_1} \cdots z_{\gamma_n} e^{\xi \left[\alpha(\gamma_1) + \dots + \alpha(\gamma_n)\right]} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

That is,

$$E_{\Lambda}ig(\mathrm{e}^{\xi\,S_{\Lambda}}ig) \;=\; rac{\Xi_{\Lambda}(oldsymbol{z}^{\xi})}{\Xi_{\Lambda}(oldsymbol{z})} \quad \mathrm{with} \quad z_{\gamma}^{\xi} = z_{\gamma}\,\mathrm{e}^{\xilpha(\gamma)}$$

Complex ξ are of interest! Also $\xi \to \xi$

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	0000000	

Free energy and phase transitions

For (translation-invariant) stat-mech models

$$f(eta, oldsymbol{h}) \;=\; \lim_{\Lambda o \mathbb{L}} rac{1}{|\Lambda|} \, \log Z^{\sigma}_{\Lambda}$$

exists and is independent of the boundary condition σ

- ▶ Spin systems: $-f/\beta$ =free-energy density
- Gas models: f/β = pressure

Derivatives of f yield sums of correlations

Key information: smoothness as function of β and \boldsymbol{h}

Loss of analyticity = phase transition (of some sort)

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	0000000	

Analiticity radius, zeros and phase transitions

If $\frac{1}{|\Lambda|} \log Z_{\Lambda}$ has a Λ -independent radius of analyticity at (β, h) :

- ▶ No phase transition for (β, h) within this radius
- ► Zeros of Z_{Λ} Λ-uniformly away from (β, h)

For the analyticity of f, one resorts to Vitali's theorem

Let f_n be a sequence of functions, D a domain and S a subset of D containing a accumulation point. If the functions f_n

- ▶ are analytic in D,
- ▶ are uniformly bounded in D, and

converge pointwisely in S;

then there exists a function f_{∞} such that $f_n \to f_{\infty}$ uniformly on compacts subsets of D

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	0000000	

Alternative lines of attack

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	0000000	

Cluster expansions

The idea is to write the polynomials in $(z_{\gamma})_{\gamma \in \mathcal{P}}$

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n_{\Lambda}} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

as *formal* exponentials of another *formal* series

$$\Xi_{\Lambda}(\boldsymbol{z}) \stackrel{\mathrm{F}}{=} \exp\left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_{1}, \dots, \gamma_{n}) \in \mathcal{P}_{\Lambda}^{n}} \phi^{T}(\gamma_{1}, \dots, \gamma_{n}) z_{\gamma_{1}} \dots z_{\gamma_{n}}\right\}$$

The series between curly brackets is the *cluster expansion*

Partitions 000	Free energy	CE	Strategy 00	Conseq 0000000	Ind
		Comm	\mathbf{ents}		

▶ WATCH OUT!: No consistency requirement, thus

$$\frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} \neq \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}_{\Lambda}}$$

▶ More generally

$$\mathbb{1}_{\{\gamma_j \sim \gamma_k\}} \longrightarrow \varphi(\gamma_j, \gamma_k)$$

for $0 \leq \varphi(\gamma_j, \gamma_k) \leq 1$.

- ▶ This gives rise to level-2 and level-3 set-ups
- Most of the theory extends to them

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	0000000	

Clusters and truncated functions

φ^T(γ₁,...,γ_n): Ursell or truncated functions (symmetric)
Clusters: Families {γ₁,...,γ_n} s.t. φ^T(γ₁,...,γ_n) ≠ 0
The formula of φ^T will be given later. Highlights:

► Clusters are *connected* w.r.t. "~"

$$\phi^T(\gamma) = 1$$
 , $\phi^T(\gamma, \gamma') = \begin{cases} -1 & \text{if } \gamma \nsim \gamma' \\ 0 & \text{otherwise} \end{cases}$

Partitions 000	Free energy	CE	Strategy ●○	Conseq 0000000	Ind
Ratios and derivat	ives				

Ratios and derivatives

Telescoping, ratios of partitions = product of one-contour ratios Substracting cluster expansions:

$$\frac{\Xi_{\Lambda}}{\Xi_{\Lambda\setminus\{\gamma_0\}}} \stackrel{\mathrm{F}}{=} \exp\left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1,\ldots,\gamma_n)\in\mathcal{P}_{\Lambda}^n\\ \exists i:\,\gamma_i=\gamma_0}} \phi^T(\gamma_1,\ldots,\gamma_n) \, z_{\gamma_1}\ldots z_{\gamma_n}\right\}$$

Slightly more convenient series (proof later):

$$\frac{\partial}{\partial z_{\gamma_0}} \log \Xi_{\Lambda} \stackrel{\mathrm{F}}{=} 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}$$

Two strategies to deal with this series: classical and inductive

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			0	0000000	
Convergence po	olicy				

Classical cluster-expansion strategy

Find convergence conditions for the series

$$\Pi_{\gamma_0}(\boldsymbol{\rho}) := 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} \left| \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) \right| \rho_{\gamma_1} \dots \rho_{\gamma_n}$$

for $\rho_{\gamma} > 0$. Then,

Cluster expansions converge *absolutely* for $|z_{\gamma}| \leq \rho_{\gamma}$ uniformly in Λ (complex valued allowed!)

This determines a region of analyticity \mathcal{R} common for all Λ Within this region

$$rac{\Xi_\Lambda}{\Xi_{\Lambda\setminus\{\gamma_0\}}} \ \le \ |z_{\gamma_0}| \ \Pi_{\gamma_0}(|oldsymbol{z}|)$$

Partitions 000	Free energy	CE	Strategy 00	Conseq	Ind
	С	Consequ	iences		

- ► Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)
- ▶ Within \mathcal{R}
 - ▶ Explicit series expressions for free energy and correlations
 - Explicit ψ -mixing:

$$\frac{\operatorname{Prob}(\{\gamma_0, \gamma_x\})}{\operatorname{Prob}(\{\gamma_0\})\operatorname{Prob}(\{\gamma_x\})} - 1 \bigg| = \bigg| e^{F[d(\gamma_0, \gamma_x)]} - 1 \bigg|$$

with $F(d) \to 0$ as $d \to \infty$ \triangleright Central limit theorem

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	● 0 00000	
Free-energy exp	pansion				

Free-energy expansion

Within ${\cal R}$

$$\log \Xi_{\Lambda} = \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n \\ (\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n}} \phi_n^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}$$
$$= \sum_{\substack{\gamma \in \mathcal{P}_{\Lambda} \\ \gamma \neq \gamma'}} z_{\gamma} - \frac{1}{2} \sum_{\substack{(\gamma, \gamma') \in \mathcal{P}_{\Lambda}^2 \\ \gamma \neq \gamma'}} z_{\gamma} z_{\gamma'} + O(|\boldsymbol{z}|^3)$$

Each term is $O(|\Lambda|)$

Partitions	Free energy	CE	Strategy 00	Conseq ○●○○○○○	Ind
Free-energy exp	Dansion				

Free-energy-density (pressure) expansion

Within \mathcal{R} : For the translation-invariant geometrical model

$$f = \lim_{\Lambda} \frac{1}{|\Lambda|} \log \Xi_{\Lambda}$$

exists and is analytic on parameters (no phase transitions!)

$$f = \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n): 0 \in \cup \gamma_i \\ \gamma \neq 0}} \phi_n^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}$$
$$= \sum_{\gamma \neq 0} z_{\gamma} - \frac{1}{2} \sum_{\substack{\gamma \neq \gamma' \\ 0 \in \gamma \cup \gamma'}} z_{\gamma} z_{\gamma'} + O(|\boldsymbol{z}|^3)$$

Partitions 000	Free energy	CE	Strategy 00	Conseq ○○●○○○○	Ind
Expansion for corr	elations				

Correlations

$$\operatorname{Prob}_{\Lambda}(\{\gamma_{0}\}) = z_{\gamma_{0}} \frac{\Xi_{\Lambda \setminus \{\gamma_{0}\}^{*}}}{\Xi_{\Lambda}} = z_{\gamma_{0}} \frac{\exp\left\{\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_{0}}} W^{T}(\mathcal{C})\right\}}{\exp\left\{\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda}}} W^{T}(\mathcal{C})\right\}}$$

 $[\mathcal{C}\sim\mathcal{C}'$ means $\gamma\sim\gamma'$ for all $\gamma\in\mathcal{C},\,\gamma'\in\mathcal{C}'].$ Hence

$$\operatorname{Prob}_{\Lambda}(\{\gamma_0\}) = z_{\gamma_0} \exp\left\{\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \approx \gamma_0}} W^T(\mathcal{C})\right\}$$

 $\begin{bmatrix} \mathcal{C} \nsim \mathcal{C}' \text{ means } \exists \gamma \in \mathcal{C}, \gamma' \in \mathcal{C}' \text{ with } \gamma \nsim \gamma' \end{bmatrix}$ $\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \nsim \gamma_0}} W^T(\mathcal{C}) = \text{cluster expansion } pinned \text{ at } \gamma_0.$

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	0000000	
Expansion for	correlations				

Expansion for correlations

Thus

$$\begin{aligned} \operatorname{Prob}(\{\gamma_0\}) \\ &= z_{\gamma_0} \exp\left\{-\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n) \\ \exists i: \gamma_i \approx \gamma_0}} \phi^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}\right\} \\ &= z_{\gamma_0} \exp\left\{\sum_{\substack{\gamma \approx \gamma_0 \\ \gamma \approx \gamma_0}} z_{\gamma} + O(|\boldsymbol{z}|^2)\right\} \\ &= z_{\gamma_0} \left[1 + \sum_{\substack{\gamma \approx \gamma_0 \\ \gamma \approx \gamma_0}} z_{\gamma}\right] + O(|\boldsymbol{z}|^3) \end{aligned}$$

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	000000	
Mixing properties					

Mixing properties

$$\operatorname{Prob}_{\Lambda}(\{\gamma_0\} \mid \{\gamma_x\}) = \frac{\operatorname{Prob}_{\Lambda}(\{\gamma_0, \gamma_x\})}{\operatorname{Prob}_{\Lambda}(\{\gamma_x\})}$$

$$= z_{\gamma_0} \frac{\Xi_{\Lambda \setminus \{\gamma_0, \gamma_x\}^*}}{\Xi_{\Lambda \setminus \{\gamma_x\}^*}}$$

Thus,

$$\operatorname{Prob}_{\Lambda}(\{\gamma_0\} \mid \{\gamma_x\}) = z_{\gamma_0} \frac{\exp\left\{\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_0, \gamma_x}} W^T(\mathcal{C})\right\}}{\exp\left\{\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_x}} W^T(\mathcal{C})\right\}}$$

$$= z_{\gamma_0} \exp\left\{-\sum_{\substack{\mathcal{C}\subset\mathcal{P}_{\Lambda}\\\mathcal{C}\approx\gamma_0,\,\mathcal{C}\sim\gamma_x}} W^T(\mathcal{C})\right\}$$

Partitions	Free energy	CE	Strategy 00	Conseq ○○○○○●○	Ind
Mixing properties					
Hence	ψ	-mixin	g		
$\frac{\text{Prol}}{\text{I}}$	$\mathrm{Prob}_{\Lambda}(\{\gamma_0\} \mid \{\gamma_x\}) = \mathrm{Prob}_{\Lambda}(\{\gamma_0\})$	$= \frac{\exp\left\{-\frac{1}{\exp\left(-\frac{1}{1}{1}{1}}{1}{1}}{1}}{1}}{1}}}}}}}}}$	$\frac{\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \approx \gamma_{0}, \mathcal{C} \sim \gamma_{x}}} W}{-\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \approx \gamma_{0}}} W^{T}(\mathbf{c})}$	$\frac{T^{T}(\mathcal{C})}{\mathcal{C}}$	

and

$$\frac{\operatorname{Prob}(\{\gamma_0\} \mid \{\gamma_x\})}{\operatorname{Prob}(\{\gamma_0\})} = \exp\left\{\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \nsim \gamma_0, \mathcal{C} \nsim \gamma_x}} W^T(\mathcal{C})\right\}$$
$$= e^{F[d(\gamma_0, \gamma_x)]}$$

with $F(d) \to 0$ as $d \to \infty$. Thus

$$\left|\frac{\operatorname{Prob}(\{\gamma_0, \gamma_x\})}{\operatorname{Prob}(\{\gamma_0\})\operatorname{Prob}(\{\gamma_x\})} - 1\right| = \left|\operatorname{e}^{F[d(\gamma_0, \gamma_x)]} - 1\right|$$

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	000000	
Central Limit Th	eorem				

Central Limit Theorem

Lemma (Dobrushin)

Let (S_n) be a sequence of random variables such that (i) $\mathbb{E}(S_n^2) < \infty$ (ii) $\operatorname{Var}(S_n) \ge c n$ (iii) $\exists R > 0$ such that

$$\left| \log \left| \mathbb{E}(\mathrm{e}^{\xi S_n}) \right| \right| \leq \widetilde{c} n \quad \text{if } |\xi| < R$$

Then

$$\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}} \xrightarrow{\operatorname{Law}} \mathcal{N}(0, 1)$$

Partitions	Free energy	CE	Strategy	Conseq	Ind
000			00	0000000	

Inductive strategy (Kotecký-Preiss, Dobrushin)

Find conditions on ${\bf z}$ defining a region ${\cal R}$ such that

$$\Xi_{\Lambda \setminus \{\gamma_0\}^*} \neq 0 \text{ in } \mathcal{R} \implies \Xi_\Lambda \neq 0 \text{ in } \mathcal{R}$$

for all Λ , $\gamma_0 \not\in \Lambda$

- Expansion neither needed nor obtained (no-cluster-expansion method)
- A posteriori: expansion converges in $\mathcal{R} \longrightarrow$ above concl.

Questions raised

- ▶ Why the alternative approach leads to better results?
- ▶ Can it be interpreted in terms of the classical approach?

Answer: Classical theory revisited