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Recapitulation

Setup

The setup

Ingredients

I Countable family P of objects: polymers, animals, . . .
I Incompatibility constraint: γ � γ′ (with γ � γ)
I Activities z = {zγ}γ∈P ∈ CP .

The basic (“finite-volume”) measures
For each finite family PΛ ⊂ P

WΛ

(
{γ1, γ2, . . . , γn}

)
=

1
ΞΛ(z)

zγ1zγ2 · · · zγn
∏
j<k

11{γj∼γk}

ΞΛ(z) = 1 +
∑
n≥1

1
n!

∑
(γ1,...,γn)∈PnΛ

zγ1zγ2 . . . zγn
∏
j<k

11{γj∼γk}
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Examples

Examples: Canonical hard core

Hard-core lattice gas:

I Polymers = vertices of a graph
I Incompatible = neighbors

Every polymer system can be set in this form

Single-call loss networks:

I P = finite connected families of links of a graph —the calls
I zγ = Poissonian rate for the call γ
I Compatibility = use of disjoint links (disjoint calls)
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Examples

Examples: Low-T expansions

Ising model at low T :

I Polymers = connected closed surfaces (contours)
I Compatibility = no intersection
I zγ = exp{−2βJ |γ|}

LTE for Ising ferromagnets:

I P = connected families of (excited) bonds (contours)
I zγ = exp

{
−2β

∑
B∈γ JB

}
I γ ∼ γ′ iff γ ∩ γ′ = ∅ (disjoint bases); (γ = ∪{B : B ∈ γ})
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Examples

Examples: High-T expansions

General HTE:

I P = {connected finite subsets of bonds}
I

zB =
∫
B

∏
A∈B

(e−β φA(ω) − 1)
⊗
x∈B

µE(dωx)

I B ∼ B′ iff B ∩B′ = ∅ (B = ∪{B : B ∈ B})

HTE for Ising ferromagnets:

I P =
{
B ∈ BΛ : B connected ,

∑
B∈B B = ∅

}
(cycles)

I zB =
∏
B∈B tanh(βJB)

I B ∼ B′ iff B ∩B′ = ∅
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Examples

Examples: Random geometrical models

FK representation of Potts models:

I P = {γ ⊂⊂ L}
I

zγ = q−(|γ|−1)
∑

B⊂Bγ
(γ,B) connected

∏
{x,y}∈B

vx y

with vx y = eβJx y − 1
I Compatibility = non-intersection
I If v{x, y} = −1 → chromatic polynomial

(β →∞ with Jx y < 0, i.e. zero-temperature
antiferromagnetic Potts)
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Examples

Examples: Geometrical polymer models

I P = family of finite subsets of some set V
I γ ∼ γ′ ⇐⇒ γ ∩ γ′ = ∅

Original polymer models of Gruber and Kunz
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Generalizations

Generalizations

Continuous polymers

z −→ z ξ ,
1
n!

∑
(γ1,...,γn)∈PnΛ

−→ 1
n!

∫
PnΛ
dγ1 · · · dγn

ΞΛ(z, ξ) = 1 +
∑
n≥1

zn

n!

∫
PnΛ
ξγ1 . . . ξγn

∏
j<k

11{γj∼γk} dγ1 · · · dγn

Soft interactions

11{γj∼γk} −→ ϕ(γj , γk)
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Cluster expansions

Cluster expansions

Write the polynomials (in (zγ)γ∈P)

ΞΛ(z) = 1 +
∑
n≥1

1
n!

∑
(γ1,...,γn)∈PnΛ

zγ1zγ2 . . . zγn
∏
j<k

11{γj∼γk}

as formal exponentials of a formal series

ΞΛ(z) F= exp
{ ∞∑
n=1

1
n!

∑
(γ1,...,γn)∈PnΛ

φT (γ1, . . . , γn) zγ1 . . . zγn

}

I The series between curly brackets is the cluster expansion
I φT (γ1, . . . , γn): Ursell or truncated functions (symmetric)
I Clusters: Families {γ1, . . . , γn} s.t. φT (γ1, . . . , γn) 6= 0
I Clusters are connected w.r.t. “�”
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Cluster expansions

Classical cluster-expansion strategy
Find a Λ-independent polydisc where cluster expansions
converge absolutely

That is, find ργ > 0 independent of Λ such that cluster
expansions converge absolutely in the region

R =
{
z : |zγ | ≤ ργ , γ ∈ P

}
To this, find ρ > 0 such that

Πγ0(ρ) := 1 +
∞∑
n=1

1
n!

∑
(γ1,...,γn)∈Pn

∣∣φT (γ0, γ1, . . . , γn)
∣∣ ργ1 . . . ργn

(no Λ!) converges. Within this region
I No ΞΛ has a zero
I Explicit series expressions for free energy and correlations
I Explicit ψ-mixing
I Central limit theorem
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Part IV

Algebraic properties of the expansion
(cont.)

Goals:
I Algebraic properties of the coefficients of the series
I Expressions for φT

Three approaches:
I Derivation using multivariate formal power series
I Verification (valid also for the continuous case)
I Elegant algebraic approach
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Outline

Truncation

The case of measurable polymers
General result
1st proof
Elegant proof
Moebius transform

Correlations

Level-1 case

Penrose identity
Truncated functions for hard core
Penrose identity
Partition schemes
Proof of Penrose identity
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Derivation through multiplicity functions

If a(γ1, . . . , γn) is symmetric under permutations of (γ1, . . . , γn)∑
n≥0

1
n!

∑
(γ1,...,γn)∈Pn

a(γ1, . . . , γn) zγ1 · · · zγn =
∑
α≥0

a(α)
α!

zα

where α = {αγ : γ ∈ P}, αγ ∈ N (multiplicty function)

Hence: ∑
α≥0

a(α)
α!

zα = exp
{∑
β≥0

aT(β)
β!

zβ
}
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Definitions of truncated coefficients

(∗) a(γ1, . . . , γn) =
∑
k

∑
{I1,...,Ik}

part. of {1,...,n}

aT(γI1) · · · aT(γIk)

or, equivalently

(∗∗) aT(γ1, . . . , γn) =
n∑
k=1

(−1)k−1(k − 1)!
∑

{I1,...,Ik}
part. of {1,...,n}

k∏
i=1

a(γIi)
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The “exponential transform”
In fact, the fact the use of labels 1, . . . , n is conventional

Theorem (“Exponential transform”)
Let S be a finite set and let F,G : Parts(S) −→ C. Then,

F (A) =
∑
k

∑
{B1,...,Bk}
part. of A

k∏
i=1

G(Bi) ∀A ⊂ S

if and only if

G(A) =
n∑
k=1

(−1)k−1(k − 1)!
∑

{B1,...,Bk}
part. of A

k∏
i=1

F (Bi) ∀A ⊂ S

[c.f. Moebius transform: F (A) =
∑

B⊂AG(B) ∀A ⊂ S ⇐⇒
G(A) =

∑
B⊂A(−1)|A\B| F (B) ∀A ⊂ S]
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General result

General measurable polymers
In fact, previous expression applies also to the continuous case

Theorem
If

(∗) a(γ1, . . . , γn) =
∑
k

∑
{I1,...,Ik}

part. of {1,...,n}

aT(γI1) · · · aT(γIk)

then, as formal power series in z,

1 +
∑
n≥1

zn

n!

∫
PnΛ
a(γ1, . . . , γn) ξγ1 · · · ξγn dγ1 · · · dγn

= exp
{∑
n≥1

zn

n!

∫
PnΛ
aT(γ1, . . . , γn) ξγ1 · · · ξγn dγ1 · · · dγn

}

[This results includes the discrete case!]
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1st proof

First proof

Replace (∗) in the original series and use combinatorics:

1 +
∑
n≥1

zn

n!

∫
PnΛ
a(γn1 ) ξγ

n
1 dγn1 =

1 +
∑
n≥1

zn

n!

∑
k≥1

∑
{I1,...,Ik}

part. of {1,...,n}

k∏
i=1

[∫
P|Ii|Λ

aT(γIi) ξ
γIi dγIi

]

The integral over dγIi depends only on |Ii| =: `i

There are
1
k!

(
n

`1 · · · `k

)
ways to choose {I1, · · · , Ik} with |Ii| = `i
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1st proof

First proof (conclusion)

Hence

1 +
∑
n≥1

zn

n!

∫
PnΛ
a(γn1 ) ξγ

n
1 dγn1

= 1 +
∑
n≥1

1
n!

∑
k≥1

∑
(`1,...,`k):
`1+···+`k=n

n!
k!

k∏
i=1

[
z`i

`i!

∫
P`iΛ

aT(γ`i1 ) ξγ
`i
1 dγ`i1

]

= 1 +
∑
k≥1

1
k!

[∑
`≥1

z`i
∫
P`Λ
aT(γ`1) ξγ

`
1 dγ`1

]k
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Elegant proof

Elegant proof

Two ingredients:
(i) An association

a = {an : Pn → C} ←→ a0 +
∑
n≥1

zn

n!

∫
PnΛ
an(γn1 ) ξγ

n
1 dγn1

(ii) An operation “∗” such that

a ∗ b ←→[
a0 +

∑
n≥1

zn

n!

∫
PnΛ
an(γn1 ) ξγ

n
1 dγn1

][
b0 +

∑
n≥1

zn

n!

∫
PnΛ
bn(γn1 ) ξγ

n
1 dγn1

]
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Elegant proof

Algebraic setup: Basic definitions

(i) In A = {a} let us define the product

(a ∗ b)n(γn1 ) :=
∑

(I1,I2)
part. of{1,...,n}

a|I1|(γI1) b|I2|(γI2)

(ii) For each integrable function ξ = {ξγ : γ ∈ P} let

〈ξ , a〉(z) := a0 +
∑
n≥1

zn

n!

∫
PnΛ
an(γn1 ) ξγ

n
1 dγn1
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Elegant proof

Algebraic setup: Key calculation

Proposition
For each ξ, the map 〈ξ , •〉(z) is a homomorphism from
(A,+, ∗) to the algebra of formal power series; that is,
(a) 〈ξ , a+ b〉(z) = 〈ξ , a〉(z) + 〈ξ , b〉(z)
(b) 〈ξ , a ∗ b〉(z) = 〈ξ , a〉(z) · 〈ξ , b〉(z)

Proof: (a) Immediate, (b) exercise (easier than the above check
on the exponential.
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Elegant proof

The ∗-exponential and ∗-log
(A,+, ∗) is an algebra with unit δ with (δ)n = δn 0

[i.e. a ∗ δ = a for each a ∈ A]
Let A+ = {a ∈ A : a0 = 0}. The series

Exp∗(b) = δ + b+
1
2
b ∗ b+

1
3!
b ∗ b ∗ b+ · · ·

defines a map Exp∗ : A→ δ +A+

By the same combinatorics as for the usual exp and log series,

Log∗(a) = a− 1
2
a ∗ a+

1
3
a ∗ a ∗ a+ · · ·

Log∗ : δ +A+ → A, is the functional inverse of Exp∗:

a = Exp∗(b) ⇐⇒ b = Log∗(a) (1)
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Elegant proof

Explicit expressions

In fact, for each argument (x1, . . . , xn) both sums are finite:

[
Exp∗(b)

]
n
(xn1 ) =

n∑
k=1

∑
{I1,...,Ik}

part. of {1,...,n}

k∏
i=1

b|Ii|(γIi) ,

[
Log∗(a)

]
n
(xn1 ) =

n∑
k=1

(−1)k−1(k − 1)!
∑

{I1,...,Ik}
part. of {1,...,n}

k∏
i=1

a|Ii|(γIi)

and (1) is just a proof of the exponential transform.
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Elegant proof

Conclusion of the elegant proof

The proof that (∗) implies

1 +
∑
n≥1

zn

n!

∫
PnΛ
a(γ1, . . . , γn) ξγ1 · · · ξγn dγ1 · · · dγn

= exp
{∑
n≥1

zn

n!

∫
PnΛ
aT(γ1, . . . , γn) ξγ1 · · · ξγn dγ1 · · · dγn

}
reduces then to the statement

As 〈ξ , •〉(z) is an homomorphism,
〈ξ , Exp∗(aT )〉(z) = exp

[
〈ξ , aT 〉(z)

]
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Moebius transform

Moebius transform reinterpreted

Let 1 ∈ A defined by 1n(γn1 ) = 1 for each n

Then [
a ∗ 1

]
n
(γn1 ) =

∑
I⊂{1,...,n}

a|I|(γI)

To invert this we need g s.t. 1 ∗ g = δ, or∑
I⊂{1,...,n}

g|I|(γI) = δn 0

By induction:
gn(γn1 ) = (−1)n

The relation
b = a ∗ 1 ⇐⇒ a = b ∗ g

is Moebius transform
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Correlations: General expression

Let us denote

PΛ(γ1, . . . , γm) = ProbΛ

(
{γ1, . . . , γm}

)
Then

PΛ(γ1, . . . , γm) =
ΞΛ(γ1, . . . , γm)

ΞΛ

with

ΞΛ(γ1, . . . , γm) = zγ1 · · · zγm
∑
n≥0

zn

n!

∫
PnΛ
φ(γm1 , γ̃

n
1 ) ξeγn1 dγ̃n1
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Derivation operator

Let us introduce Dγ : A −→ A+:[
Dγ a

]
n
(γ̃1, . . . , γ̃n) = an+1(γ, γ̃1, . . . , γn)

More generally, let Dγm1
= Dγm · · ·Dγ1 :[

Dγm1
a
]
n
(γ̃1, . . . , γ̃n) = an+m(γm1 , γ̃

n
1 )

We see that
ΞΛ(γm1 ) = 〈ξ , Dγm1

φ〉 (2)
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Properties of derivations
The operator DΓ can be called a derivation because

Dγ(a ∗ b) = Dγ(a) ∗ b + a ∗Dγ(b)

[Proof: exercise]

Hence, using series combinatorics as for the usual exponential

Dγ

[
Exp∗(a)

]
= Dγ(a) ∗ Exp∗(a)

and, more generally,

Dγm1

[
Exp∗(a)

]
=

m∑
k=1

∑
{I1,...,Ik}

part. of {1,...,m}

DγI1
(a) ∗ · · · ∗DγIk

(a) ∗ Exp∗(a) (3)
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Truncated partitions
From (2)–(3):

ΞΛ(γm1 ) =
〈
ξ, Dγm1

Exp∗(φT )
〉

=
m∑
k=1

∑
{I1,...,Ik}

part. of {1,...,m}

〈
ξ , DγI1

(φT )
〉
· · ·
〈
ξ , DγIk

(φT )
〉

× 〈ξ , Exp∗(φT )〉

Let us denote

ΞTΛ(γm1 ) :=
〈
ξ , Dγm1

(φT )
〉

= zγ1 · · · zγm
∑
n≥0

zn

n!

∫
PnΛ
φT (γm1 , γ̃

n
1 ) ξeγn1 dγ̃n1

[can be estimated through cluster expansion]
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Truncated probabilities

Finally,

PΛ(γ1, . . . , γm) =
m∑
k=1

∑
{I1,...,Ik}

part. of {1,...,m}

ΞTΛ(γI1) · · ·ΞTΛ(γIk)

This allows the control of correlations via cluster expansion

Note that PΛ is the exponential transform of ΞTΛ
Hence, by the inversion (log) formula:

ΞTΛ(γm1 ) =
m∑
k=1

(−1)k−1(k − 1)!
∑

{I1,...,Ik}
part. of {1,...,m}

PΛ(γI1) · · ·PΛ(γIk)
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Discrete case

Proposition
As formal power series,

ΞTΛ(γ1, . . . , γm) =
(
zγ1

∂

∂γ1
· · · zγm

∂

∂γm

)
log Ξ

Proof. By induction, m = 1 is enough. Must prove:

Lemma
For symmetric functions a(γ1, . . . , γn),

∂

∂γ0

(∑
n≥0

1
n!

∑
(γ1,...,γn)∈Pn

a(γ1, . . . , γn) zγ1 · · · zγn
)

=
∑
n≥0

1
n!

∑
(γ1,...,γn)∈Pn

a(γ0, γ1, . . . , γn) zγ1 · · · zγn
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Proof of the lemma
We resort to the identity∑

n≥0

1
n!

∑
(γ1,...,γn)∈Pn

a(γ1, . . . , γn) zγ1 · · · zγn =
∑
α≥0

a(α)
α!

zα (4)

We have

∂

∂γ0

(∑
n≥0

1
n!

∑
(γ1,...,γn)∈Pn

a(γ1, . . . , γn) zγ1 · · · zγn
)

=
∑

α≥0:αγ0≥1

a(α)
(α− δγ0)!

zα−δγ0

=
∑
α≥0

a(α+ δγ0)
α!

zα

which, by (4), is the RHS of the lemma
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Most popular case

a(γ1, . . . , γn) =
∏
{i,j}

ϕ(γi, γj)

[ϕ(γi, γj) = e−β U(γ1,γj); β →∞ for “hard-core”]. Writing

ϕ(γi, γj) = 1 +
(
ϕ(γi, γj)− 1

)
= 1 + ψ(γi, γj)

We have

a(γ1, . . . , γn) =
∏
{i,j}

[
1 + ψ(γi, γj)

]
=

∑
G⊂Gn

∏
e∈E(G)

ψ(γe)

I Gn =complete graph with vertices {1, . . . , n}
I Sum over (not necessarily spanning) subgraphs of Gn
I E(G) = edge set of G
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Connected graphs and partitions

Decomposing each G into connected components,

a(γ1, . . . , γn) =
n∑
k=1

∑
{G1,...,Gk}

conn. part. of Gn

k∏
i=1

[ ∏
e∈E(G)

ψ(γe)
]

[Gi can be a single vertex,
∏
∅ ≡ 1]

Grouping graphs with same vertex set:

a(γ1, . . . , γn) =
n∑
k=1

∑
{I1,...,Ik}

part. of {1,...,n}

k∏
i=1

[ ∑
G⊂GIi

conn. span.

∏
e∈E(Gi)

ψ(γe)
]
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THE formula

Conclusion: If

a(γ1, . . . , γn) =
∏
{i,j}

ϕ(γi, γj)

then

aT(γ1, . . . , γn) =
∑
G⊂Gn

conn. span.

∏
e∈E(G)

ψ(γe)

with
ψ(γi, γj) = ϕ(γi, γj)− 1
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Truncated functions for hard core

Truncated functions for hard core
For hard core:

ψ(γi, γj) = 11{γi∼γj} − 1 =
{
−1 if γi � γj

0 if γi ∼ γj

Hence: For each n-tuple (γ1, . . . , γn) construct the graph

G(γ1,...,γn) with V (G) = {1, . . . , n} and E(G) =
{
{i.j} : γi � γj

}
Then

φT (γ1, . . . , γn) =



1 n = 1∑
G⊂G(γ1,...,γn)
G conn. spann.

(−1)|E(G)| n ≥ 2 , G conn.

0 n ≥ 2 , G not c.

This formula involves a huge number of cancellations
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Penrose identity

Penrose identity

Penrose realized that these cancellations can be optimally
handled through what is now known as the property of
partitionability of the family of connected spanning subgraphs

Theorem
For any connected graph G = (V,E) there exists a family of
spanning trees —the Penrose trees T Penr

G — such that∑
G⊂G

(−1)|E(G)| = (−1)|V|−1
∣∣T Penr
G

∣∣
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Partition schemes

Partitionability of subgraphs

Let
I G = (U,E) a finite connected graph
I CG = {connected spanning subgraphs of G}
I TG = {trees belonging to CG}

Partial-order CG by bond inclusion:

G ≤ G̃ ⇐⇒ E(G) ⊂ E(G̃)

If G ≤ G̃, let

[G, G̃] = {Ĝ ∈ CG : G ≤ Ĝ ≤ G̃}
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Partition schemes

Partition schemes

A partition scheme for CG is a map

R : TG −→ CG
τ 7−→ R(τ)

such that
(i) E

(
R(τ)

)
⊃ E(τ), and

(ii) CG is the disjoint union of the sets [τ,R(τ)], τ ∈ TG.
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Partition schemes

Penrose scheme

I Fix an enumeration v0, v1, . . . , vn for the vertices of G
I For each τ ∈ TG let d(i) = tree distance of vi to v0

I RPen(τ) is obtained adding to τ {vi, vj} ∈ E \ E(τ) s.t.

(p1) d(i) = d(j) (edges between vertices of the same generation),
or

(p2) d(i) = d(j)− 1 and i < j (edges connecting to predecessors
with smaller index).
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Proof of Penrose identity

Penrose identity

For a partition scheme R, let

TR :=
{
τ ∈ TG

∣∣∣ R(τ) = τ
}

(set of R-trees).

Proposition ∑
G∈CG

(−1)|E(G)| = (−1)|V|−1
∣∣TR∣∣

for any partition scheme R
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Proof of Penrose identity

Proof of Penrose identity

For any numbers xe, e ∈ E,∑
G∈CG

∏
e∈E(G)

xe =
∑
τ∈TG

∏
e∈E(τ)

xe
∑

F⊂E(R(τ))\E(τ)

∏
e∈F

xe

=
∑
τ∈TG

∏
e∈E(τ)

xe
∏

e∈E(R(τ))\E(τ)

(1 + xe)

I If xe = −1, the last factor kills the contributions of any
tree τ with E(R(τ)) \ E(τ) 6= ∅

I For any tree,
∣∣E(τ)

∣∣ = |V| − 1
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Proof of Penrose identity

Comments

I Hard-core condition is crucial. If only soft repulsion,

|1 + xe| ≤ 1

and we get the weaker tree-graph bound∣∣∣ ∑
G∈CG

∏
e∈E(G)

xe

∣∣∣ ≤ ∑
τ∈TG

∏
e∈E(τ)

|xe| ≤ |TG|

I At any rate we have the identity∑
G∈CG

∏
e∈E(G)

xe =
∑
τ∈TG

∏
e∈E(τ)

xe
∏

e∈E(R(τ))\E(τ)

(1 + xe)



Truncation Continous Correlations Level-1 Penrose

Proof of Penrose identity

Tree-with-larger-degrees bound

As Penrose conditions involve loops:

The smaller the number of loops,
the easier to satisfy Penrose conditions

Hence, if for an incompatibility graph G,

TG = homogeneous tree with max. degree of G

then ∣∣T Penr
G,n

∣∣ ⊂ ∣∣∣T Penr
TG ,n

∣∣∣
where TG,n refers to all trees with n vertices

Hence, for the univariate case (zγ = z, only # of trees counts):

R(G) ⊃ R(TG)
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Part V

Convergence criteria for hard-core
polymers

We shall review three types of proofs:
I “Classical” (Cammarota, Brydges): defoliation of trees
I Inductive (Kotecký-Preiss, Dobrushin):

“no-cluster-expansion”
I Classical revisited (F.-Procacci): trees from root up

We shall compare results for benchmark examples
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Outline
Review of formulas

Truncated functions for hard core
Penrose identity

Classical convergence criterium
Classical majorizing series
Summing “from leaves down”
Classical criterium

Inductive approach
Classical approach revisited

New criterion
Standard form of the criteria

Proof
The ingredients
Convergence condition
Explanation of the different criteria



Formulas Classical Inductive New Proof

THE formula

If
a(γ1, . . . , γn) =

∏
{i,j}

ϕ(γi, γj)

then

aT(γ1, . . . , γn) =
∑
G⊂Gn

conn. span.

∏
{i,j}∈E(G)

ψ(γi, γj)

with Gn = complete graph on {1, . . . , n} and

ψ(γi, γj) = ϕ(γi, γj)− 1
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Truncated functions for hard core

Truncated functions for hard core
For hard core:

ψ(γi, γj) = 11{γi∼γj} − 1 =
{
−1 if γi � γj

0 if γi ∼ γj

Hence: For each n-tuple (γ1, . . . , γn) construct the graph

G(γ1,...,γn) with V (G) = {1, . . . , n} and E(G) =
{
{i.j} : γi � γj

}
Then

φT (γ1, . . . , γn) =



1 n = 1∑
G⊂G(γ1,...,γn)
G conn. spann.

(−1)|E(G)| n ≥ 2 , G conn.

0 n ≥ 2 , G not c.

This formula involves a huge number of cancellations
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Penrose identity

Penrose identity

Penrose realized that these cancellations can be optimally
handled through what is now known as the property of
partitionability of the family of connected spanning subgraphs

Theorem
For any connected graph G = (V,E) there exists a family of
spanning trees —the Penrose trees T Penr

G — such that∑
G⊂G

(−1)|E(G)| = (−1)|V|−1
∣∣T Penr
G

∣∣
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Penrose identity

Penrose scheme

I Fix an enumeration v0, v1, . . . , vn for the vertices of G
I For each τ ∈ TG (thought as a tree rooted in v0), define

d(i) = tree distance of vi to v0

I Let RPen(τ)= τ plus all links {vi, vj} ∈ E \ E(τ) s.t.

(p1) d(i) = d(j) (edges between vertices of the same generation),
or

(p2) d(i) = d(j)− 1 and i < j (edges connecting to predecessors
with smaller index).

I Then,
τ ∈ T Penr

G ⇐⇒ RPen(τ) = τ
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Penrose identity

Penrose trees

General graph
A Penrose tree for G is a spanning tree s.t.

(P1) Brothers are not be neighbors in G and
(P2) A (generalized) nephew-uncle pair is not linked in G if

nephew has larger index

Cluster-expansion graphs
A Penrose tree for G(γ0,...,γn) is a spanning tree s.t.

(P1) Brothers are incompatible and
(P2) (Generalized) nephews are incompatible with uncles with

smaller index
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Penrose identity

Tree-graph bound

In conclusion:∣∣φT (γ0, γ1, . . . , γn)
∣∣ =

∣∣∣T Pen
G(γ0,γ1,...,γn)

∣∣∣
Historically, the only way Penrose identity was exploited was
through the tree-graph bound:∣∣φT (γ0, γ1, . . . , γn)

∣∣ ≤ ∣∣∣TG(γ0,γ1,...,γn)

∣∣∣
where TG = {connected spanning trees of G}
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Classical majorizing series

“Classical” majorizing series

Using the tree-graph bound,∣∣∣∣∣∑
G⊂G

(−1)|E(G)|

∣∣∣∣∣ =
∣∣T Penr
G

∣∣ ≤ ∣∣TG∣∣
we obtain

Πγ0(ρ) ≤
∑
n≥0

1
n!
Tn(γ0)

where T 0 = 1 and

Tn(γ0) =
∑

(γ1,...,γn)

∑
τ∈TG(γ0,γ1,...,γn)

ργ1 · · · ργn
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Classical majorizing series

Contribution of a tree

Interchanging sum over polymers with sum over trees:

Tn(γ0) =
∑

τ∈T 0
n+1

∑
(γ1,...,γn) s.t.

τ⊂G(γ0,γ1,...,γn)

ργ1 · · · ργn

=
∑

τ∈T 0
n+1

T τ (γ0)

where

T 0
n+1 = {trees of vertices 0, 1, . . . n, rooted in 0}
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Summing “from leaves down”

Geometrical translation-invariant polymers

To compute T τ start summing over γ’s at leaves:

si∏
j=1

∑
γ(i,j)�γi

ργ(i,j)
=
[∑
γ�γi

ργ

]si
For translation-invariant geometrical polymers,∑

γ�γi

ργ ≤ |γi|
∑
γ30

ργ

Then, for each γi that is ancestor of leaves

ργi −→ ργi |γi|
si
[∑
γ30

ργ

]si



Formulas Classical Inductive New Proof

Summing “from leaves down”

Summing “from leaves down”

Iterate! The sum over successive ancestors yields

T τ (γ0) ≤ |γ0|
n∏
i=0

[∑
γ30

ργ |γ|si
]

I This bound depends only on s0, s1, . . . , sn

I The sum over trees τ brings a factor

# trees with coord. nbers
s0, s1 + 1, . . . , sn + 1

=
(

n

s0 + 1 s1 . . . sn

)
(Cayley formula)



Formulas Classical Inductive New Proof

Classical criterium

Classical criterion

In consequence

Tn(γ0) ≤ |γ0| n!
∑

s0,s1,...,snP
si=n−1

n∏
i=0

[∑
γ30

ργ
|γ|si

si!

]

Hence
Πγ0(ρ) ≤ |γ0|

∑
n≥0

[∑
γ30

ργ e|γ|
]n

which converges if ∑
γ30

ργ e|γ| < 1

[Cammarota (1982), Brydges (1984)]
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Inductive arguments

Kotecký-Preiss (1986): Convergence if a : P → [0,∞) s.t.∑
γ′�γ

ργ′ ea(γ′) ≤ a(γ)

Dobrushin (1996): Convergence if a : P → [0,∞) s.t.

ργ ≤
(

ea(γ) − 1
)

exp
{
−
∑
γ′�γ

a(γ′)
}

Key: Control ΞΛ
ΞΛ\{γ0}

through (deletion-contraction?)

ΞΛ = ΞΛ\{γ0} + zγ0 ΞΛ\N ∗γ0

[N ∗γ0
= {polymers incompatible with γ0}]
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Dobrushin criterion

Theorem
Assume

ργ ≤
(

ea(γ) − 1
)

exp
{
−
∑
γ′�γ

a(γ′)
}

(5)

Then, if |zγ | ≤ ργ ∣∣∣∣log
∣∣∣∣ ΞΛ

ΞΛ\{γ0}

∣∣∣∣∣∣∣∣ ≤ a(γ0) (6)

Note that if Λ′ ⊂ Λ, telescoping,∣∣∣∣log
∣∣∣∣ ΞΛ

ΞΛ′

∣∣∣∣∣∣∣∣ ≤ ∑
γ∈Λ\Λ′

a(γ) < ∞ (7)
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Proof of Dobrushin criterion

By induction on |Λ|. Start with∣∣∣∣ ΞΛ

ΞΛ\{γ0}

∣∣∣∣ ≤ 1 + ργ0

∣∣∣∣∣ΞΛ\N ∗γ0

ΞΛ\{γ0}

∣∣∣∣∣
From (7) ∣∣∣∣ ΞΛ

ΞΛ\{γ0}

∣∣∣∣ ≤ 1 + ργ0 exp
{∑
γ�γ0

a(γ)
}

And, by the criterion (5)∣∣∣∣ ΞΛ

ΞΛ\{γ0}

∣∣∣∣ ≤ ea(γ0)

Then use logarithmic inequalities.
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“Standard form” of the criteria

If we substitute

µγ = ργ eaγ (Kotecký-Preiss)
µγ = eaγ − 1 (Dobrushin)

We obtain convergence if there exists µ ∈ [0,∞)P such that

ργ0 exp
[∑
γ�γ0

µγ

]
≤ µγ0 (Kotecký-Preiss)

ργ0

∏
γ�γ0

(
1 + µγ

)
≤ µγ0 (Dobrushin)
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Comparison D ↔ KP

D improves KP because∏
γ�γ0

(
1 + µγ

)
≤ exp

[∑
γ�γ0

µγ

]
Differences:

I D lacks powers µ`γ
I D exact for polymers with only self-exclusion
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Observations

I It looks as a hierarchy of approximations
I Dobrushin extracts extra information Which one?
I Why the form

ργ0 ϕγ0(µ) ≤ µγ0 ? (8)

Work with A. Procacci:
I All further information must be in Penrose identity
I Form (8) suggests iteration
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New criterion

New condition (with A. Procacci)

For each γ0 ∈ P let

ΞN ∗γ0
(µ) = 1 +

∑
n≥1

1
n!

∑
(γ1,...,γn)∈Pn

γ0�γi , γi∼γj , 1≤i,j≤n

µγ1µγ2 . . . µγn

(grand-canonical part. funct. of the G-nbhd of γ0, including γ0)

Theorem
If for ρ ∈ [0,∞)P there exists a µ ∈ [0,∞)P such that

ργ0 ΞN ∗γ0
(µ) ≤ µγ0 , ∀γ0 ∈ P ,

then Π(ρ) converges for such ρ
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New criterion

Comparison New ↔ D

The improvement is expressed by the inequality

ΞN ∗γ0
(µ) ≤

∏
γ�γ0

(
1 + µγ

)
LHS contains only monomials of mutually compatible polymers

Sources of improvement:

(I1) ΞN ∗γ0
has no triangle diagram (i.e. pairs of neighbors of γ0

that are themselves neighbors)
(I2) In ΞN ∗γ0

, the only monomial containing µγ0 is µγ0 itself, (γ0

is incompatible with all other polymers in N ∗γ0
)
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New criterion

Intermediate criterium

Our criterium does not have a product form

(Sokal) It may be useful to use the bound

ΞN ∗γ0
(µ) = µγ0 + ΞNγ0

(µ)

≤ µγ0 +
∏
γ�γ0
γ 6=γ0

(
1 + µγ

)
to obtain the Improved Dobrushin criterium

ργ0

[
µγ0 +

∏
γ�γ0
γ 6=γ0

(
1 + µγ

)]
≤ µγ0
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Standard form of the criteria

Summary of conditions

Available convergence conditions are of the form

ργ0 ϕγ0(µ) ≤ µγ0

with

ϕγ0(µ) =



exp
[∑

γ∈N ∗γ0
µγ

]
(Kotecký-Preiss)∏

γ∈N ∗γ0

(
1 + µγ

)
(Dobrushin)

µγ0 +
∏
γ∈Nγ0

(
1 + µγ

)
(improved Dobrushin)

ΞN ∗γ0
(µ) (new)



Formulas Classical Inductive New Proof

The ingredients

Proof. 1st ingredient: Improved tree bound

Retain only (P1): Brothers may not be linked in G

If {i, i1} and {i, i2} are edges of τ , then γi1 ∼ γi2

In this way ρΠ(ρ) ≤ ρ∗, with

ρ∗γ0
:=

ργ0

[
1 +

∞∑
n=1

1
n!

∑
(γ1,...,γn)∈Pn

∑
τ∈T 0

n

n∏
i=0

csi(γi, γi1 , . . . , γisi )ργi1 . . . ργisi

]

where i1, . . . , isi = descendants of i and

cn(γ0, γ1, . . . , γn) =
n∏
i=1

11{γ0�γi}

n∏
j=1

11{γi∼γj}
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The ingredients

2nd ingredient: Iterative generation of trees
Consider the function Tρ : [0,∞)P → [0,∞]P defined by(
Tρ(µ)

)
γ0

= ργ0

[
1+
∑
n≥1

1
n!

∑
(γ1,...,γn)∈Pn

cn(γ0, γ1, . . . , γn)µγ1 . . . µγn

]
or

Tρ(µ) = ρϕ(µ)

Diagrammatically:

(
Tρ(µ)

)
γ0

= ◦
γ0

+ ◦
γ0

•1 + ◦
γ0

��
�•1

H
HH•2

+ · · · + ◦
γ0

�
�
•1

��
�•2...@
@•n

+ · · ·



Formulas Classical Inductive New Proof

The ingredients

Summing “from the roots up”
The diagrams of the series

Tρ(Tρ(µ)) = T 2
ρ (µ)

have black dots replaced by each of the preceding diagrams.
That is, T 2

ρ (µ) = sums over trees with up to two generations
with • in 2nd generation
Likewise, T nρ (µ) = sums over trees with up to n generations
with • in n-th generation

Iterating,
T nρ (ρ) ↗

n→∞
ρ∗

Alternatively, ρ∗ generated by replacing • → ρ∗:

ρ∗ = ρϕ(ρ∗) or ρ∗ = Tρ(ρ∗)
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Convergence condition

Convergence

Cheap way to ensure finiteness: Existence of µ s.t.

Tρ(µ) ≤ µ (9)

Then, by positiveness of the terms:

ρ∗ ≤ T nρ (µ) ≤ · · · ≤ T 2
ρ (µ) ≤ µ

Furthermore, if there is convergence, then (9) holds for µ = ρ∗



Formulas Classical Inductive New Proof

Convergence condition

Theorem (∗)

ρ∗ converges iff ρϕ(µ) ≤ µ for some µ ∈ [0,∞)P

Within the region of convergence
(i) T nρ (ρ) ↗

n→∞
ρ∗

(ii) ρ∗ = Tρ(ρ∗) or ρ = ρ∗/ϕ(ρ∗):

ρ∗ = f(ρ) =⇒ f−1(ρ∗) =
ρ∗

ϕ(ρ∗)

(iii) For each n ∈ N,

ρΠ ≤ ρ∗ ≤ T n+1
ρ (µ) ≤ T nρ (µ) ≤ µ
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Explanation of the different criteria

Tρ for the new criterion

If

cn(γ0, γ1, . . . , γn) =
n∏
i=1

11{γ0�γi}

n∏
j=1

11{γi∼γj}

then(
Tρ(µ)

)
γ0

= ργ0

[
1 +

∑
n≥1

1
n!

∑
(γ1,...,γn)∈Pn

γ0�γi , γi∼γj , 1≤i,j≤n

µγ1 . . . µγn

]

= ργ0 ΞPγ0
(µ)
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Explanation of the different criteria

Tρ for the Dobrushin criterion

If we replace γi � γj by the weaker requirement γi 6= γj :

cDob
n (γ0, γ1, . . . , γn) =

n∏
i=1

11{γ0�γi}

n∏
j=1

11{γi 6=γj}

which yields(
TDob
ρ (µ)

)
γ0

= ργ0

[
1 +

∑
n≥1

1
n!

∑
(γ1,...,γn)∈Pn

γ0�γi , γi 6=γj , 1≤i,j≤n

µγ1 . . . µγn

]

= ργ0

∏
γ�γ0

(1 + µγ)

(Dobrushin condition)
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Explanation of the different criteria

Tρ for the Kotecký-Preiss criterion

If requirement γi � γj is ignored altogether,

cKP
n (γ0, γ1, . . . , γn) =

n∏
i=1

11{γ0�γi}

and(
TKP
ρ (µ)

)
γ0

= ργ0

[
1 +

∑
n≥1

1
n!

∑
(γ1,...,γn)∈Pn
γ0�γi , 1≤i≤n

µγ1 . . . µγn

]

= ργ0 exp
[∑
γ�γ0

µγ

]
(Kotecký-Preiss)
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Part VI

Applications and examples

We compare convergence results for
I Incompatibility graphs of bounded degree
I Geometrical polymers
I Zeroes of the chromatic polynomial
I Hard spheres



1-d Finite Geometrical Chromatic HS Perspectives

Outline

Univariate case

Incompatibility graphs of finite degree

Geometrical polymers

Zeroes of chromatic polynomials
Sources of improvement
General strategy
Sokal-Borgs
Improved bounds

Hard spheres
The bounds

Perspectives
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Univariate case: zγ = z

ρ∗

ρ
= 1 +

∞∑
n=1

ρn

n!

[ ∑
(γ1,...,γn)∈Pn

∑
τ∈T 0

n

n∏
i=0

csi(γi, γi1 , . . . , γisi )
]

and

ϕ(µ) = 1 +
∑
n≥1

µn

n!

[ ∑
(γ1,...,γn)∈Pn

cn(γ0, γ1, . . . , γn)
]

Then, the radius of convergence of ρ∗ is (exactly!)

sup
µ>0

µ

ϕ(µ)
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Single-polymer case

Take P = {γ} and csi(γ, γ, . . . , γ) = csi , then

ρ∗

ρ
= 1 +

∞∑
n=1

ρn

n!

[∑
τ∈T 0

n

n∏
i=0

csi

]
and

ϕ(µ) = 1 +
∑
n≥1

cn
µn

n!
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Something known

Particular case: cn = 1
Then,

ρ∗ =
∞∑
n=1

nn−1

n!
ρn , ϕ(µ) = eµ

Theorem (∗) implies:

(i) Radius of convergence = sup
µ>0

µ e−µ = e−1

(ii) For 0 < x < e−1

c = f(x) =
∞∑
n=1

nn−1

n!
xn ⇐⇒


c = x ec

f−1(c) = c e−c

f(x) = x ef(x)

f(x) = Lambert W function
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Comparison: Graphs of maximal degree ∆

Condition Radius

Kotecký-Preiss
1

(∆ + 1) e

Dobrushin
∆∆

(∆ + 1)∆+1

Improved Dobrushin
=new for (∆−1)-reg. tree

[
1 +

∆∆

(∆− 1)∆−1

]−1

Scott-Sokal
(∆− 1)(∆−1)

∆∆
(∗)

New: (∆+1)-complete graph (∆ + 1)−1 (∗)
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Explanation: Criteria for graphs of degree ∆

Condition Criterion

Kotecký-Preiss ρ ≤ µ e−(∆+1)µ

Dobrushin ρ ≤ µ

(1 + µ)∆+1

improved Dobrushin

=new for (∆−1)-reg. tree
ρ ≤ µ

µ+ (1 + µ)∆
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Comparison: Graphs of maximal degree 6

Condition Radius

Kotecký-Preiss 0.052

Dobrushin 0.056

Improved Dobrushin 0.062

Scott-Sokal 0.067

New: Domino in Z2 0.076

New: Triangular lattice 0.078

New: complete graph 0.142
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Explanation: New criteria for graphs of degree 6

Model Criterion

Domino in Z2 ρ ≤ µ

1 + 7µ+ 9µ2

Triangular lattice ρ ≤ µ

1 + 7µ+ 8µ2 + 2µ3

(∆+1)-complete graph ρ ≤ µ

1 + (∆ + 1)µ
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Improvements for geometrical polymers

It is useful to pass to functions a(γ) defined by µγ = ργ ea(γ)

Our new condition becomes

1 +
∑
n≥1

∑
{γ1,...,γn}⊂P

γ0∩γi 6=∅ , γi∩γj=∅ , 1≤i,j≤n

n∏
i=1

ργi ea(γi) ≤ ea(γ0)

Keep: each of γ1, . . . , γn intersects a different point in γ0

(otherwise they would overlap).Hence
(i) n ≤ |γ0|

(ii) n different points in γ0 are touched by γ1 ∪ · · · ∪ γn
These n points can be chosen in

(|γ0|
n

)
ways
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“New” condition for geometrical polymers

Hence, the left-hand side is less or equal than

1 +
|γ0|∑
n=1

(
|γ0|
n

)[
sup
x∈γ0

∑
γ∈P
γ3x

ργ ea(γ)

]n
=

[
1 + sup

x∈γ0

∑
γ∈P
γ3x

ργ ea(γ)

]|γ0|

This leads to the condition

sup
x∈γ0

∑
γ∈P
γ3x

ργ ea(γ) ≤ ea(γ0)/|γ0| − 1
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Gruber-Kunz condition

In practice, a(γ) is chosen of the form a(γ) = a |γ|, with a > 0:
I This the expected optimal asymptotic behavior for |γ| large
I Calculations are reduced to the determination of a

[General dependence: to deal better with small polymers]

If, in addition,
sup
x∈γ0

−→ sup
x∈V

“new” condition = Gruber-Kunz (1971) condition

Originally proven using Kirkwood-Salzburg, can also be proven
inductively
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Comparison: Geometrical polymers

Criterion Condition

Kotecký-Preiss sup
x

∑
γ∈P:γ3x

ργ ea|γ| ≤ a

Dobrushin sup
x

∏
γ∈P:γ3x

[
1 + ργ ea|γ|

]
≤ ea

Gruber-Kunz sup
x

∑
γ∈P:γ3x

ργ ea|γ| ≤ ea − 1
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Zeros of chromatic polynomials

No zeros = convergence of cluster expansion for γ ⊂ V with

zγ(q) = q−(|γ|−1)
∑

B⊂Bγ
(γ,B) conn.

(−1)|B|

Available criteria

sup
x

∑
γ∈P:γ3x

ργ ea|γ| ≤
{
a (KP )
ea − 1 (GK)
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Double improvement

Combining above expressions, zeros are excluded if∑
n≥2

eanCqn ≤
{
a (KP )
ea − 1 (GK)

with
Cqn = sup

x∈V

∑
γ⊂V: x∈γ
|γ|=n

∣∣zγ(q)
∣∣

Two sources of improvement:
(i) Use of GK instead of KP

(ii) Better estimation of Cqn thanks to Penrose
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Successive bounds

Cqn ≤
(

1
q

)n−1

Tn

with

Tn =



sup
v0∈V

tPen
n (G, v0)

sup
v0∈V

tn(G, v0)

nn−1

n!
∆n−1

tn(G, v0) = # subtrees of G, with n vertices, including v0

tPen
n (G, v0) = # of Penrose subtrees rooted at v0
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General strategy

General strategy

Chromatic polynomial free of zeros in the region

|q| ≥ min
a≥0

inf
{
κ :

∞∑
n=1

Tn

[ea

κ

]n−1
≤
{

1 + a e−a (KP )
2− e−a (GK)

}}

= min
a≥0

ea
[
sup
{
x : F (x) ≤

{
1 + a e−a (KP )
2− e−a (GK)

}}]−1

with

F (x) =
∞∑
n=1

Tn x
n−1
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Sokal-Borgs

Sokal-Borgs bound

For the weakest choice Tn = nn−1 ∆n−1/n!,

F (x) =
f(∆x)

∆x
= ef(∆x)

for f seen above. Hence

F (x) ≤ 1 + a e−a =⇒ f(∆x) ≤ ln(1 + a e−a)

and, as f−1(c) = c e−c, there are no zeros if

|q| ≥ min
a≥0

exp
{
a+ ln(1 + a e−a)

}
ln(1 + a e−a)

∆

GK improvement: 1 + a e−a → 2− e−a (7.97 → 6.91)
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Sokal-Borgs

Improved bound
G of maximal degree ∆
Pessimistic estimation:

F (x) =
f(x)
x

with f(x) =
∑
n≥1

tn(∆)xn

tn(∆) = # of n-vertex subtrees in the ∆-tree incl. a fixed vertex

To construct f(x):
I Start with weight x and choose branches (out of ∆)
I At the end of each branch, repeat!

Hence:

f(x) = x
[
1 + f(x)

]∆
and f−1(c) =

c

(1 + c)∆

[Exercise: prove this through Theorem (∗)]
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Sokal-Borgs

Sokal bound

F (x) ≤ 1 + a e−a =⇒ f(x) ≤ (1 + a e−a)1/∆ − 1

=⇒ x ≤ (1 + a e−a)1/∆ − 1
1 + a e−a

1st improvement: except for root, only ∆− 1 branches available

f∆(x) = x[1 + f∆−1(x)]∆

This yields absence of zeros for (Sokal’s table)

|q| ≥ min
a>0

ea(1 + ae−a)1− 1
∆

(1 + ae−a)
1
∆ − 1

2nd improvement: 1 + ae−a → 2− e−a
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Improved bounds

Use of Penrose trees

I Penrose trees exclude triangle diagrams
I Root can link to any neighbor
I Other vertices link to neighbors 6= predecessor

For k = 1, . . .∆, let

tGk = sup
v0∈V

∣∣∣{U ⊂ N ∗v0
: |U | = k and {v, v′} /∈ E ∀ v, v′ ∈ U

}∣∣∣
(maximal number of families of k vertices that have a common
neighbor but are not neighbors between themselves)

t̃Gk = sup
v0∈V

max
v∈N ∗v0

∣∣∣{U ⊂ N ∗v0
\{v} : |U | = k and {v, v′} /∈ E ∀ v, v′ ∈ U

}∣∣∣
(same as above but excluding, in addition, one of the neighbors)
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Improved bounds

Doubly improved bound

Then

ZG(x) = 1 +
∆∑
k=1

tGk x
k (10)

plays the role of (1 + x)∆ in Sokal’s argument, and

Z̃G(x) = 1 +
∆−1∑
k=1

t̃Gk x
k (11)

plays the role of 1 + f∆−1. Using also GK:

|q| ≥ min
a>0

ea
Z̃G

(
Z−1
G (2− e−a)

)
Z−1
G (2− e−a)
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Improved bounds

Comparison: Zeros of chromatic polynomials

Upper bounds of the radius of the polydisc containing the zeros
of the chromatic polynomials for graphs of maximum degree ∆

General graph Complete graph
∆ Sokal New New Exact
2 13.23 10.72 9.90 2
3 21.14 17.57 15.75 3
4 29.08 24.44 21.58 4
6 44.98 38.24 33.24 6

Any 7.97∆ 6.91∆ 5.83∆ ∆
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The bounds

Classical bound for the hard-sphere gas

ϕγ0(µ) = 1 +
∑
n≥1

µn

n!

∫
Λn
dx1 · · · dxn

∏
i

11{|xi−x0|≤R}

= exp
[
Vd(R)µ

]
with Vd(R) = volume of d-dimensional sphere of radius R

Hence convergence if

|z| Vd(R) < max
µ

µ

exp
[
Vd(R)µ

] =
1
e
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The bounds

Analycity for the hard-sphere gas: New bound

|z|Vd(R) ≤ max
µ>0

µ

Cd(µ)

where

Cd(µ) =
∑
k≥0

µk

k!
1

[Vd(1)]k

∫
|yi|≤1
|yi−yj |>1

dy1 . . . dyk
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The bounds

Hard-sphere gas in two dimensions

If d = 2:

Classical: |z| V2(R) ≤ 0.36787 . . .

New: |z| V2(R) ≤ 0.5107
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Directions for further research

I Incorporation of additional constraints in Penrose trees
I Use of other partition schemes
I Inductive proof?
I Extension to polymers with soft interactions (in progress)
I Uncountably many polymers (eg. quantum contours)
I Revisit “classical” results based on cluster expansions
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Part VII

Alternative probabilistic scheme

The alternative treatment has the following features:
I It is probabilistic, hence only positive activities
I Basic measures = invariant measures for point processes
I Larger region of validity, but no analyticity
I Yields a “universal” perfect simulation scheme
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Outline

The process and its schemes
Basic process
Forward-forward and forward-backwards schemes

Perfect simulation
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Probabilistic approach
(with P. Ferrari and N. Garcia)

Basic measures are invariant for the following dynamics:
I Attach to each polymer γ a poissonian clock with rate zγ
I When the clock rings, γ tries to be born
I It succeeds if no other γ′ present with γ � γ′

I Once born, the polymer has an exp(1) lifespan
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Basic process

Alternative scheme

1st step: free process

I Generate first a free process where all birth are succesful
I Associate to each born polymer γ a space-time cylinder

Cγ =
(
γ, [BirthCγ , DeathCγ ]

)
2nd step: cleaning
To decide whether a given cylinder Cγ remains alive, determine
its clan of ancestors

A1(Cγ) =
{
C ′ : BaseC′ � γ,BirthCγ ∈ [BirthC′ , DeathC′ ]

}
An+1(Cγ) = A1

(
An(Cγ)

)
A(Cγ) = ∪nAn(Cγ)
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Forward-forward and forward-backwards schemes

Forward-forward scheme

If A(Cγ) is finite. do the cleaning starting from the “mother
cylinder”

I Keep mother
I Erase first children
I Keep new mothers

I
...

This is a forward-forward scheme
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Forward-forward and forward-backwards schemes

Backward-forward scheme

Ancestors clan can be constructed backwards
(Poisson and exponential distributions are reversible)

To construct the clan of ancestors of a finite window Λ:
I Generate, backwards, marks at rate zγ e−s for each γ � Λ
I These are cylinders born at −s and surviving up to 0
I Take the first mark; ignore the rest. If its basis is γ1

I Repeat with

Λ → Λ ∪ {γ1}

s → s−
{

Birthγ1 if γ � γ′

0 if γ � Λ, γ ∼ γ1

I · · · −→ AΛ
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Perfect simulation

If
P({AΛ finite}) = 1 (12)

cleaning leads exactly to a sample of the basic measure

Sufficient conditions for (12)?
I Clan of ancestors defines an oriented percolation model
I Lack of percolation =⇒ (12)
I Can dominate by a branching process:

I branches = ancestors
I branching rate = mean surface-area of cylinders:

1
|γ|
∑
θ�γ

|θ| zθ × 1

(geometrical case)
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Extinction condition
Extinction of the branching process implies (12)

Hence, perfect simulation if
1
|γ|
∑
θ�γ
|θ| zθ ≤ 1

Under this condition
I Prob = limΛ ProbΛ exists
I Mixing properties∣∣∣Prob({γ0, γ1})− Prob({γ0}) Prob({γ1})

∣∣∣ ≤ e−M dist(γ0,γ1)

I CLT: If A depends on a finite # of polymers
1√
Λ

∑
x∈Λ

11{A+x} −→Λ N (0, D)

with D =
∑

x Prob(A ∪A+ x)
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Comments

I Perfect simulation of a finite window of the infinite Prob
I Universal perfect simulation algorithm
I Scheme = alternative definition of Prob
I Hence, new way to prove its properties in a larger region
I No analyticity, no info on zeros of partition functions



Process Perfect simulation

.
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