Recapitulation

Cluster expansions: Overview and new convergence results IV. Algebraic identites, convergence and applications

> Roberto Fernández CNRS - Université de Rouen

> > IHP, November 2008

Recapitulation

Setup

The setup

Ingredients

- Countable family \mathcal{P} of objects: polymers, animals, ...
- Incompatibility constraint: $\gamma \nsim \gamma'$ (with $\gamma \nsim \gamma$)
- Activities $\boldsymbol{z} = \{z_{\gamma}\}_{\gamma \in \mathcal{P}} \in \mathbb{C}^{\mathcal{P}}.$

The basic ("finite-volume") measures For each *finite* family $\mathcal{P}_{\Lambda} \subset \mathcal{P}$

$$W_{\Lambda}(\{\gamma_1, \gamma_2, \dots, \gamma_n\}) = \frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} z_{\gamma_1} z_{\gamma_2} \cdots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

Examples

Examples: Canonical hard core

Hard-core lattice gas:

- ▶ Polymers = vertices of a graph
- ► Incompatible = neighbors

Every polymer system can be set in this form

Single-call loss networks:

- ▶ \mathcal{P} = finite connected families of links of a graph —the *calls*
- $z_{\gamma} =$ Poissonian rate for the call γ
- ► Compatibility = use of disjoint links (disjoint calls)

Examples

Examples: Low-T expansions

Ising model at low T:

- ▶ Polymers = connected closed surfaces (contours)
- ▶ Compatibility = no intersection

$$\blacktriangleright z_{\gamma} = \exp\{-2\beta J |\gamma|\}$$

LTE for Ising ferromagnets:

P = connected families of (excited) bonds (contours) *z*_γ = exp{-2β∑_{B∈γ} J_B}
γ ~ γ' iff <u>γ</u> ∩ <u>γ'</u> = Ø (disjoint bases); (<u>γ</u> = ∪{B : B ∈ γ})

Examples

Examples: High-T expansions

General HTE:

 $\blacktriangleright \mathcal{P} = \{\text{connected finite subsets of bonds}\}$

$$z_{\boldsymbol{B}} = \int_{\underline{\boldsymbol{B}}} \prod_{A \in \boldsymbol{B}} (e^{-\beta \phi_A(\omega)} - 1) \bigotimes_{x \in \underline{\boldsymbol{B}}} \mu_E(d\omega_x)$$

 $\blacktriangleright \ \boldsymbol{B} \sim \boldsymbol{B}' \text{ iff } \underline{\boldsymbol{B}} \cap \underline{\boldsymbol{B}}' = \emptyset \ (\underline{\boldsymbol{B}} = \cup \{B : B \in \boldsymbol{B}\})$

HTE for Ising ferromagnets:

$$\blacktriangleright \mathcal{P} = \left\{ \boldsymbol{B} \in \mathcal{B}_{\Lambda} : \underline{\boldsymbol{B}} \text{ connected }, \sum_{B \in \boldsymbol{B}} B = \emptyset \right\} \text{ (cycles)}$$

$$\blacktriangleright z_{\boldsymbol{B}} = \prod_{B \in \boldsymbol{B}} \tanh(\beta J_B)$$

 $\blacktriangleright \ B \sim B' \text{ iff } \underline{B} \cap \underline{B}' = \emptyset$

Examples

Examples: Random geometrical models

FK representation of Potts models:

$$\mathcal{P} = \{ \gamma \subset \subset \mathbb{L} \}$$

$$z_{\gamma} = q^{-(|\gamma|-1)} \sum_{\substack{B \subset B_{\gamma} \\ (\gamma,B) \text{ connected}}} \prod_{\{x,y\} \in B} v_{xy}$$

with $v_{xy} = e^{\beta J_{xy}} - 1$

► Compatibility = non-intersection

• If $v\{x, y\} = -1 \rightarrow$ chromatic polynomial $(\beta \rightarrow \infty \text{ with } J_{xy} < 0, \text{ i.e. zero-temperature antiferromagnetic Potts})$ $\begin{array}{c} \mathbf{Recapitulation} \\ \circ \circ \circ \circ \circ \bullet \circ \circ \circ \end{array}$

Examples

Examples: Geometrical polymer models

▶ \mathcal{P} = family of finite subsets of some set \mathbb{V}

$$\blacktriangleright \ \gamma \sim \gamma' \Longleftrightarrow \gamma \cap \gamma' = \emptyset$$

Original polymer models of Gruber and Kunz

Recapitulation

Generalizations

Generalizations

Continuous polymers

$$\begin{aligned} \boldsymbol{z} &\longrightarrow z \, \boldsymbol{\xi} \quad , \quad \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} \quad \longrightarrow \quad \frac{1}{n!} \int_{\mathcal{P}_{\Lambda}^n} d\gamma_1 \cdots d\gamma_n \\ \Xi_{\Lambda}(z, \boldsymbol{\xi}) &= 1 + \sum_{n \ge 1} \frac{z^n}{n!} \int_{\mathcal{P}_{\Lambda}^n} \xi_{\gamma_1} \dots \xi_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}} d\gamma_1 \cdots d\gamma_n \end{aligned}$$

Soft interactions

$$\mathbb{1}_{\{\gamma_j \sim \gamma_k\}} \longrightarrow \varphi(\gamma_j, \gamma_k)$$

 $\begin{array}{c} \mathbf{Recapitulation} \\ \circ \circ \circ \circ \circ \circ \bullet \circ \end{array}$

Cluster expansions

Cluster expansions

Write the polynomials (in $(z_{\gamma})_{\gamma \in \mathcal{P}}$)

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n_{\Lambda}} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

as *formal* exponentials of a *formal* series

$$\Xi_{\Lambda}(\boldsymbol{z}) \stackrel{\mathrm{F}}{=} \exp\left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1,...,\gamma_n) \in \mathcal{P}_{\Lambda}^n} \phi^T(\gamma_1,\ldots,\gamma_n) \, z_{\gamma_1}\ldots z_{\gamma_n}
ight\}$$

- The series between curly brackets is the *cluster expansion*φ^T(γ₁,...,γ_n): Ursell or truncated functions (symmetric)
 Clusters: Families {γ₁,...,γ_n} s.t. φ^T(γ₁,...,γ_n) ≠ 0
- ▶ Clusters are *connected* w.r.t. "~"

Cluster expansions

Classical cluster-expansion strategy Find a Λ -independent polydisc where cluster expansions converge absolutely

That is, find $\rho_{\gamma} > 0$ independent of Λ such that cluster expansions converge absolutely in the region

$$\mathcal{R} \;=\; \left\{ oldsymbol{z} : |z_{\gamma}| \leq
ho_{\gamma} \,,\, \gamma \in \mathcal{P}
ight\}$$

To this, find $\rho > 0$ such that

$$\Pi_{\gamma_0}(\boldsymbol{\rho}) := 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} \left| \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) \right| \, \rho_{\gamma_1} \dots \rho_{\gamma_n}$$

(no Λ !) converges. Within this region

- ▶ No Ξ_{Λ} has a zero
- ▶ Explicit series expressions for free energy and correlations
- Explicit ψ -mixing
- ► Central limit theorem

Truncation	Continous	Correlations	Level-1	Penrose
	000000000			00000000

Part IV

Algebraic properties of the expansion (cont.)

Goals:

- ▶ Algebraic properties of the coefficients of the series
- Expressions for ϕ^T

Three approaches:

- Derivation using multivariate formal power series
- ▶ Verification (valid also for the continuous case)
- Elegant algebraic approach

Truncation	Continous	Correlations	Level-1	Penrose 000000000
		Outline		
Truncat	ion			

The case of measurable polymers

General result 1st proof Elegant proof Moebius transform

Correlations

Level-1 case

Penrose identity

Truncated functions for hard core Penrose identity Partition schemes Proof of Penrose identity

Continous 0000000000 Correlations

Level-1

Penrose 000000000

Derivation through multiplicity functions

If $a(\gamma_1, \ldots, \gamma_n)$ is symmetric under permutations of $(\gamma_1, \ldots, \gamma_n)$

$$\sum_{n\geq 0} \frac{1}{n!} \sum_{(\gamma_1,\ldots,\gamma_n)\in\mathcal{P}^n} a(\gamma_1,\ldots,\gamma_n) \, z_{\gamma_1}\cdots z_{\gamma_n} = \sum_{\boldsymbol{\alpha}\geq \boldsymbol{0}} \frac{a(\boldsymbol{\alpha})}{\boldsymbol{\alpha}!} \, \boldsymbol{z}^{\boldsymbol{\alpha}}$$

where $\boldsymbol{\alpha} = \{\alpha_{\gamma} : \gamma \in \mathcal{P}\}, \alpha_{\gamma} \in \mathbb{N} \text{ (multiplicity function)}$

Hence:

$$\sum_{\boldsymbol{\alpha} \geq \boldsymbol{0}} \frac{a(\boldsymbol{\alpha})}{\boldsymbol{\alpha}!} \boldsymbol{z}^{\boldsymbol{\alpha}} = \exp\left\{\sum_{\boldsymbol{\beta} \geq \boldsymbol{0}} \frac{a^{\mathrm{T}}(\boldsymbol{\beta})}{\boldsymbol{\beta}!} \boldsymbol{z}^{\boldsymbol{\beta}}\right\}$$

Continous 0000000000

Correlations

Level-1

Penrose 000000000

Definitions of truncated coefficients

$$(*) \quad a(\gamma_1, \dots, \gamma_n) = \sum_k \sum_{\substack{\{I_1, \dots, I_k\} \\ \text{part. of } \{1, \dots, n\}}} a^{\mathrm{T}}(\gamma_{I_1}) \cdots a^{\mathrm{T}}(\gamma_{I_k})$$

or, equivalently

$$(**) \quad a^{\mathrm{T}}(\gamma_{1}, \dots, \gamma_{n}) = \sum_{k=1}^{n} (-1)^{k-1} (k-1)! \sum_{\substack{\{I_{1}, \dots, I_{k}\} \\ \text{part. of } \{1, \dots, n\}}} \prod_{i=1}^{k} a(\gamma_{I_{i}})$$

Continous

Correlations

Level-1

Penrose 000000000

The "exponential transform"

In fact, the fact the use of labels $1, \ldots, n$ is conventional

Theorem ("Exponential transform") Let S be a finite set and let $F, G : Parts(S) \longrightarrow \mathbb{C}$. Then,

$$F(A) = \sum_{k} \sum_{\substack{\{B_1, \dots, B_k\} \\ \text{part. of } A}} \prod_{i=1}^k G(B_i) \quad \forall A \subset S$$

if and only if

$$G(A) = \sum_{k=1}^{n} (-1)^{k-1} (k-1)! \sum_{\substack{\{B_1,\dots,B_k\}\\\text{part. of }A}} \prod_{i=1}^{k} F(B_i) \quad \forall A \subset S$$

[c.f. Moebius transform: $F(A) = \sum_{B \subset A} G(B) \ \forall A \subset S \iff G(A) = \sum_{B \subset A} (-1)^{|A \setminus B|} F(B) \ \forall A \subset S$]

Continous • 000000000 Correlations

Level-1

Penrose 000000000

General result

General measurable polymers

In fact, previous expression applies also to the continuous case **Theorem**

If

$$(*) \quad a(\gamma_1, \dots, \gamma_n) = \sum_k \sum_{\substack{\{I_1, \dots, I_k\} \\ \text{part. of } \{1, \dots, n\}}} a^{\mathrm{T}}(\gamma_{I_1}) \cdots a^{\mathrm{T}}(\gamma_{I_k})$$

then, as formal power series in z,

$$1 + \sum_{n \ge 1} \frac{z^n}{n!} \int_{\mathcal{P}^n_{\Lambda}} a(\gamma_1, \dots, \gamma_n) \,\xi_{\gamma_1} \cdots \xi_{\gamma_n} \,d\gamma_1 \cdots d\gamma_n$$

=
$$\exp\left\{\sum_{n \ge 1} \frac{z^n}{n!} \int_{\mathcal{P}^n_{\Lambda}} a^{\mathrm{T}}(\gamma_1, \dots, \gamma_n) \,\xi_{\gamma_1} \cdots \xi_{\gamma_n} \,d\gamma_1 \cdots d\gamma_n\right\}$$

[This results includes the discrete case!]

Truncation	Continous ○●0○○○○○○	Correlations	Level-1	Penrose 000000000
1st proof				

First proof

Replace (*) in the original series and use combinatorics:

$$1 + \sum_{n \ge 1} \frac{z^n}{n!} \int_{\mathcal{P}^n_{\Lambda}} a(\gamma_1^n) \boldsymbol{\xi}^{\gamma_1^n} d\gamma_1^n = \\ 1 + \sum_{n \ge 1} \frac{z^n}{n!} \sum_{k \ge 1} \sum_{\substack{\{I_1, \dots, I_k\} \\ \text{part. of } \{1, \dots, n\}}} \prod_{i=1}^k \left[\int_{\mathcal{P}^{|I_i|}_{\Lambda}} a^{\mathrm{T}}(\gamma_{I_i}) \boldsymbol{\xi}^{\gamma_{I_i}} d\gamma_{I_i} \right]$$

The integral over $d\gamma_{I_i}$ depends only on $|I_i| =: \ell_i$ There are

$$\frac{1}{k!} \binom{n}{\ell_1 \cdots \ell_k}$$

ways to choose $\{I_1, \cdots, I_k\}$ with $|I_i| = \ell_i$

Truncation
1st proof

Continous

Correlations

Level-1

Penrose 000000000

First proof (conclusion)

Hence

Truncation	Continous	Correlations	Level-1	Penrose 000000000
Elegant proof				
	Ele	egant proof		

Two ingredients:

(i) An association

$$\underline{a} = \{a_n : \mathcal{P}^n \to \mathbb{C}\} \quad \longleftrightarrow \quad a_0 + \sum_{n \ge 1} \frac{z^n}{n!} \int_{\mathcal{P}^n_{\Lambda}} a_n(\gamma_1^n) \,\boldsymbol{\xi}^{\gamma_1^n} \, d\gamma_1^n$$

(ii) An operation "*" such that

$$\frac{\underline{a} * \underline{b}}{\left[a_0 + \sum_{n \ge 1} \frac{z^n}{n!} \int_{\mathcal{P}^n_{\Lambda}} a_n(\gamma_1^n) \boldsymbol{\xi}^{\gamma_1^n} d\gamma_1^n\right] \left[b_0 + \sum_{n \ge 1} \frac{z^n}{n!} \int_{\mathcal{P}^n_{\Lambda}} b_n(\gamma_1^n) \boldsymbol{\xi}^{\gamma_1^n} d\gamma_1^n\right]$$

Truncation	Continous	Correlations	Level-1	Penrose
	000000000			00000000
Elegant proof				

Algebraic setup: Basic definitions

(i) In $\underline{A} = \{\underline{a}\}$ let us define the product $(\underline{a} * \underline{b})_n(\gamma_1^n) := \sum_{\substack{(I_1, I_2)\\part. of\{1, \dots, n\}}} a_{|I_1|}(\gamma_{I_1}) b_{|I_2|}(\gamma_{I_2})$

(ii) For each integrable function $\boldsymbol{\xi} = \{\xi_{\gamma} : \gamma \in \mathcal{P}\}$ let

$$\langle \boldsymbol{\xi}, \underline{a} \rangle(z) := a_0 + \sum_{n \ge 1} \frac{z^n}{n!} \int_{\mathcal{P}^n_{\Lambda}} a_n(\gamma_1^n) \boldsymbol{\xi}^{\gamma_1^n} d\gamma_1^n$$

Continous

Correlations

Level-1

Penrose 000000000

Elegant proof

Algebraic setup: Key calculation

Proposition

For each $\boldsymbol{\xi}$, the map $\langle \boldsymbol{\xi}, \bullet \rangle(z)$ is a homomorphism from $(\underline{A}, +, *)$ to the algebra of formal power series; that is, (a) $\langle \boldsymbol{\xi}, \underline{a} + \underline{b} \rangle(z) = \langle \boldsymbol{\xi}, \underline{a} \rangle(z) + \langle \boldsymbol{\xi}, \underline{b} \rangle(z)$ (b) $\langle \boldsymbol{\xi}, \underline{a} * \underline{b} \rangle(z) = \langle \boldsymbol{\xi}, \underline{a} \rangle(z) \cdot \langle \boldsymbol{\xi}, \underline{b} \rangle(z)$

Proof: (a) Immediate, (b) exercise (easier than the above check on the exponential. \Box

TT CITOROTOTI

Continous

Correlations

Level-1

Penrose 000000000

Elegant proof

The *-exponential and *-log $(\underline{A}, +, *) \text{ is an algebra with unit } \underline{\delta} \text{ with } (\underline{\delta})_n = \delta_{n\,0}$ [i.e. $\underline{a} * \underline{\delta} = \underline{a}$ for each $\underline{a} \in \underline{A}$] Let $\underline{A}_+ = \{\underline{a} \in \underline{A} : a_0 = 0\}$. The series $\operatorname{Exp}^*(\underline{b}) = \underline{\delta} + \underline{b} + \frac{1}{2}\underline{b} * \underline{b} + \frac{1}{3!}\underline{b} * \underline{b} * \underline{b} + \cdots$

defines a map $\operatorname{Exp}^* : \underline{A} \to \underline{\delta} + \underline{A}_+$

By the same combinatorics as for the usual exp and log series,

$$\operatorname{Log}^*(\underline{a}) = \underline{a} - \frac{1}{2}\underline{a} * \underline{a} + \frac{1}{3}\underline{a} * \underline{a} * \underline{a} + \cdots$$

 $\operatorname{Log}^* : \underline{\delta} + \underline{A}_+ \to \underline{A}$, is the functional inverse of Exp^* :

$$\underline{a} = \operatorname{Exp}^{*}(\underline{b}) \iff \underline{b} = \operatorname{Log}^{*}(\underline{a})$$
(1)

Truncation	Continous	Correlations	Level-1	Penrose
	000000000			00000000
Elegant proof				

Explicit expressions

In fact, for each argument (x_1, \ldots, x_n) both sums are finite:

$$\left[\operatorname{Exp}^{*}(\underline{b})\right]_{n}(x_{1}^{n}) = \sum_{k=1}^{n} \sum_{\substack{\{I_{1},\dots,I_{k}\}\\ \text{part. of }\{1,\dots,n\}}} \prod_{i=1}^{k} b_{|I_{i}|}(\gamma_{I_{i}}) ,$$

$$\left[\operatorname{Log}^{*}(\underline{a})\right]_{n}(x_{1}^{n}) = \sum_{k=1}^{n} (-1)^{k-1} (k-1)! \sum_{\substack{\{I_{1},\dots,I_{k}\}\\ \text{part. of } \{1,\dots,n\}}} \prod_{i=1}^{k} a_{|I_{i}|}(\gamma_{I_{i}})$$

and (1) is just a proof of the exponential transform.

Truncation	Continous	Correlations	Level-1	Penrose
	000000000			00000000
Elegant proof				

Conclusion of the elegant proof

The proof that (*) implies

$$1 + \sum_{n \ge 1} \frac{z^n}{n!} \int_{\mathcal{P}^n_{\Lambda}} a(\gamma_1, \dots, \gamma_n) \,\xi_{\gamma_1} \cdots \xi_{\gamma_n} \,d\gamma_1 \cdots d\gamma_n$$

=
$$\exp\left\{\sum_{n \ge 1} \frac{z^n}{n!} \int_{\mathcal{P}^n_{\Lambda}} a^{\mathrm{T}}(\gamma_1, \dots, \gamma_n) \,\xi_{\gamma_1} \cdots \xi_{\gamma_n} \,d\gamma_1 \cdots d\gamma_n\right\}$$

reduces then to the statement

As
$$\langle \boldsymbol{\xi}, \boldsymbol{\bullet} \rangle(z)$$
 is an homomorphism,
 $\langle \boldsymbol{\xi}, \operatorname{Exp}^*(\underline{a}^T) \rangle(z) = \exp\left[\langle \boldsymbol{\xi}, \underline{a}^T \rangle(z)\right]$

Continous

Correlations

Level-1

Penrose 000000000

Moebius transform

Moebius transform reinterpreted

Let $\underline{1} \in \underline{A}$ defined by $1_n(\gamma_1^n) = 1$ for each nThen

$$\left[\underline{a}*\underline{1}\right]_{n}(\gamma_{1}^{n}) = \sum_{I \subset \{1,\dots,n\}} a_{|I|}(\gamma_{I})$$

To invert this we need \underline{g} s.t. $\underline{1} * \underline{g} = \underline{\delta}$, or

$$\sum_{I \subset \{1,...,n\}} g_{|I|}(\gamma_I) \; = \; \delta_{n \, 0}$$

By induction:

$$g_n(\gamma_1^n) = (-1)^n$$

The relation

$$\underline{b} = \underline{a} * \underline{1} \iff \underline{a} = \underline{b} * \underline{g}$$

is Moebius transform

Continous

Correlations

Level-1

Penrose 000000000

Correlations: General expression

Let us denote

$$P_{\Lambda}(\gamma_1, \dots, \gamma_m) = \operatorname{Prob}_{\Lambda}(\{\gamma_1, \dots, \gamma_m\})$$

Then

$$P_{\Lambda}(\gamma_1,\ldots,\gamma_m) = \frac{\Xi_{\Lambda}(\gamma_1,\ldots,\gamma_m)}{\Xi_{\Lambda}}$$

with

$$\Xi_{\Lambda}(\gamma_1,\ldots,\gamma_m) = z_{\gamma_1}\cdots z_{\gamma_m} \sum_{n\geq 0} \frac{z^n}{n!} \int_{\mathcal{P}^n_{\Lambda}} \phi(\gamma_1^m,\widetilde{\gamma}_1^n) \boldsymbol{\xi}^{\widetilde{\gamma}_1^n} d\widetilde{\gamma}_1^n$$

Continous

Correlations

Level-1

Penrose

Derivation operator

Let us introduce
$$D_{\gamma} : \underline{A} \longrightarrow \underline{A}_+$$
:

$$\left[D_{\gamma}\underline{a}\right]_{n}(\widetilde{\gamma}_{1},\ldots,\widetilde{\gamma}_{n}) = a_{n+1}(\gamma,\widetilde{\gamma}_{1},\ldots,\gamma_{n})$$

More generally, let $D_{\gamma_1^m} = D_{\gamma_m} \cdots D_{\gamma_1}$:

$$\left[D_{\gamma_1^m} \underline{a}\right]_n (\widetilde{\gamma}_1, \dots, \widetilde{\gamma}_n) = a_{n+m}(\gamma_1^m, \widetilde{\gamma}_1^n)$$

We see that

$$\Xi_{\Lambda}(\gamma_1^m) = \langle \boldsymbol{\xi} , D_{\gamma_1^m} \underline{\phi} \rangle \tag{2}$$

Continous 0000000000

Correlations

Level-1

Penrose 000000000

Properties of derivations

The operator D_{Γ} can be called a derivation because

$$D_{\gamma}(\underline{a} * \underline{b}) = D_{\gamma}(\underline{a}) * \underline{b} + \underline{a} * D_{\gamma}(\underline{b})$$

[Proof: exercise]

Hence, using series combinatorics as for the usual exponential

$$D_{\gamma} [\operatorname{Exp}^{*}(\underline{a})] = D_{\gamma}(\underline{a}) * \operatorname{Exp}^{*}(\underline{a})$$

and, more generally,

$$D_{\gamma_1^m} \left[\operatorname{Exp}^*(\underline{a}) \right] = \sum_{\substack{k=1 \\ \text{part. of } \{I_1, \dots, I_k\} \\ \text{part. of } \{1, \dots, m\}}}^m D_{\gamma_{I_1}}(\underline{a}) * \dots * D_{\gamma_{I_k}}(\underline{a}) * \operatorname{Exp}^*(\underline{a}) \quad (3)$$

Truncation	
------------	--

Continous

Correlations

Level-1

Truncated partitions

From (2)–(3): $\Xi_{\Lambda}(\gamma_{1}^{m}) = \langle \boldsymbol{\xi}, D_{\gamma_{1}^{m}} \operatorname{Exp}^{*}(\underline{\phi}^{T}) \rangle$ $= \sum_{k=1}^{m} \sum_{\substack{\{I_{1}, \dots, I_{k}\}\\ \text{part. of } \{1, \dots, m\}}} \langle \boldsymbol{\xi}, D_{\gamma_{I_{1}}}(\underline{\phi}^{T}) \rangle \cdots \langle \boldsymbol{\xi}, D_{\gamma_{I_{k}}}(\underline{\phi}^{T}) \rangle$ $\times \langle \boldsymbol{\xi}, \operatorname{Exp}^{*}(\phi^{T}) \rangle$

Let us denote

$$\begin{aligned} \Xi_{\Lambda}^{T}(\gamma_{1}^{m}) &:= \left\langle \boldsymbol{\xi} \,, \, D_{\gamma_{1}^{m}}(\underline{\phi}^{T}) \right\rangle \\ &= z_{\gamma_{1}} \cdots z_{\gamma_{m}} \sum_{n \geq 0} \frac{z^{n}}{n!} \int_{\mathcal{P}_{\Lambda}^{n}} \phi^{T}(\gamma_{1}^{m}, \widetilde{\gamma}_{1}^{n}) \, \boldsymbol{\xi}^{\widetilde{\gamma}_{1}^{n}} \, d\widetilde{\gamma}_{1}^{n} \end{aligned}$$

[can be estimated through cluster expansion]

Correlations

Level-1

Penrose

Truncated probabilities

Finally,

$$P_{\Lambda}(\gamma_1,\ldots,\gamma_m) = \sum_{k=1}^m \sum_{\substack{\{I_1,\ldots,I_k\}\\ \text{part. of } \{1,\ldots,m\}}} \Xi^T_{\Lambda}(\gamma_{I_1})\cdots\Xi^T_{\Lambda}(\gamma_{I_k})$$

This allows the control of correlations via cluster expansion Note that \underline{P}_{Λ} is the exponential transform of $\underline{\Xi}_{\Lambda}^{T}$ Hence, by the inversion (log) formula:

$$\Xi_{\Lambda}^{T}(\gamma_{1}^{m}) = \sum_{k=1}^{m} (-1)^{k-1} (k-1)! \sum_{\substack{\{I_{1},\dots,I_{k}\}\\ \text{part. of } \{1,\dots,m\}}} P_{\Lambda}(\gamma_{I_{1}}) \cdots P_{\Lambda}(\gamma_{I_{k}})$$

Truncation	Continous	Correlations	Level-1	Penrose
	000000000			00000000

Discrete case

Proposition

As formal power series,

$$\Xi_{\Lambda}^{T}(\gamma_{1},\ldots,\gamma_{m}) = \left(z_{\gamma_{1}}\frac{\partial}{\partial\gamma_{1}}\cdots z_{\gamma_{m}}\frac{\partial}{\partial\gamma_{m}}\right)\log\Xi$$

Proof. By induction, m = 1 is enough. Must prove: Lemma

For symmetric functions $a(\gamma_1, \ldots, \gamma_n)$,

$$\frac{\partial}{\partial \gamma_0} \left(\sum_{n \ge 0} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} a(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \cdots z_{\gamma_n} \right)$$
$$= \sum_{n \ge 0} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} a(\gamma_0, \gamma_1, \dots, \gamma_n) z_{\gamma_1} \cdots z_{\gamma_n}$$

Truncation

Correlations

Level-1

Penrose

Proof of the lemma

We resort to the identity

$$\sum_{n\geq 0} \frac{1}{n!} \sum_{(\gamma_1,\dots,\gamma_n)\in\mathcal{P}^n} a(\gamma_1,\dots,\gamma_n) \, z_{\gamma_1}\cdots z_{\gamma_n} = \sum_{\boldsymbol{\alpha}\geq \boldsymbol{0}} \frac{a(\boldsymbol{\alpha})}{\boldsymbol{\alpha}!} \, \boldsymbol{z}^{\boldsymbol{\alpha}} \quad (4)$$

We have

$$\frac{\partial}{\partial \gamma_0} \left(\sum_{n \ge 0} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} a(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \cdots z_{\gamma_n} \right) \\ = \sum_{\boldsymbol{\alpha} \ge 0: \alpha_{\gamma_0} \ge 1} \frac{a(\boldsymbol{\alpha})}{(\boldsymbol{\alpha} - \delta_{\gamma_0})!} \boldsymbol{z}^{\boldsymbol{\alpha} - \delta_{\gamma_0}} \\ = \sum_{\boldsymbol{\alpha} \ge 0} \frac{a(\boldsymbol{\alpha} + \delta_{\gamma_0})}{\boldsymbol{\alpha}!} \boldsymbol{z}^{\boldsymbol{\alpha}}$$

which, by (4), is the RHS of the lemma \Box

Trunca	tion
--------	------

Continous

Correlations

Level-1

Most popular case

$$a(\gamma_1,\ldots,\gamma_n) = \prod_{\{i,j\}} \varphi(\gamma_i,\gamma_j)$$

 $[\varphi(\gamma_i, \gamma_j) = e^{-\beta U(\gamma_1, \gamma_j)}; \beta \to \infty \text{ for "hard-core"}].$ Writing

$$\varphi(\gamma_i, \gamma_j) = 1 + (\varphi(\gamma_i, \gamma_j) - 1) = 1 + \psi(\gamma_i, \gamma_j)$$

We have

$$a(\gamma_1, \dots, \gamma_n) = \prod_{\{i,j\}} \left[1 + \psi(\gamma_i, \gamma_j) \right]$$
$$= \sum_{G \subset G_n} \prod_{e \in E(G)} \psi(\gamma_e)$$

- G_n =complete graph with vertices $\{1, \ldots, n\}$
- ▶ Sum over (not necessarily spanning) subgraphs of G_n

•
$$E(G) = \text{edge set of } G$$

Level-1

Connected graphs and partitions

Decomposing each G into connected components,

$$a(\gamma_1, \dots, \gamma_n) = \sum_{k=1}^n \sum_{\substack{\{G_1, \dots, G_k\} \\ \text{conn. part. of } G_n}} \prod_{i=1}^k \left[\prod_{e \in E(G)} \psi(\gamma_e) \right]$$

 $[G_i \text{ can be a single vertex}, \prod_{\emptyset} \equiv 1]$ Grouping graphs with same vertex set:

$$a(\gamma_1, \dots, \gamma_n) = \sum_{k=1}^n \sum_{\substack{\{I_1, \dots, I_k\} \\ \text{part. of } \{1, \dots, n\}}} \prod_{i=1}^k \left[\sum_{\substack{G \subset G_{I_i} \\ \text{conn. span.}}} \prod_{e \in E(G_i)} \psi(\gamma_e) \right]$$

Truncation	

Continous

Correlations

Level-1

Penrose

THE formula

Conclusion: If

$$a(\gamma_1,\ldots,\gamma_n) = \prod_{\{i,j\}} \varphi(\gamma_i,\gamma_j)$$

then

$$a^{\mathrm{T}}(\gamma_1, \dots, \gamma_n) = \sum_{\substack{G \subset G_n \\ \mathrm{conn. span.}}} \prod_{e \in E(G)} \psi(\gamma_e)$$

with

$$\psi(\gamma_i, \gamma_j) = \varphi(\gamma_i, \gamma_j) - 1$$

Continous 0000000000 Correlations

Level-1

Truncated functions for hard core

Truncated functions for hard core For hard core:

$$\psi(\gamma_i, \gamma_j) = \mathbb{1}_{\{\gamma_i \sim \gamma_j\}} - 1 = \begin{cases} -1 & \text{if } \gamma_i \nsim \gamma_j \\ 0 & \text{if } \gamma_i \sim \gamma_j \end{cases}$$

Hence: For each *n*-tuple $(\gamma_1, \ldots, \gamma_n)$ construct the graph

 $\mathcal{G}_{(\gamma_1,\dots,\gamma_n)}$ with $V(\mathcal{G}) = \{1,\dots,n\}$ and $E(\mathcal{G}) = \{\{i.j\} : \gamma_i \nsim \gamma_j\}$ Then

$$\phi^{T}(\gamma_{1},\ldots,\gamma_{n}) = \begin{cases} 1 & n = 1\\ \sum_{\substack{G \subset \mathcal{G}(\gamma_{1},\ldots,\gamma_{n})\\G \text{ conn. spann.}}} (-1)^{|E(G)|} & n \ge 2, \mathcal{G} \text{ conn.} \\ 0 & n \ge 2, \mathcal{G} \text{ not c.} \end{cases}$$

This formula involves a huge number of cancellations
Truncation	Continous 0000000000	Correlations	Level-1	Penrose ○●○○○○○○○
Penrose identity				

Penrose identity

Penrose realized that these cancellations can be optimally handled through what is now known as the property of *partitionability* of the family of connected spanning subgraphs

Theorem

For any connected graph $\mathcal{G} = (\mathbb{V}, \mathbb{E})$ there exists a family of spanning trees —the Penrose trees $\mathcal{T}_{\mathcal{G}}^{\text{Penr}}$ — such that

$$\sum_{G \subset \mathcal{G}} (-1)^{|E(G)|} = (-1)^{|\mathbb{V}|-1} \big| \mathcal{T}_{\mathcal{G}}^{\text{Penr}} \big|$$

Truncation	Continous	Correlations	Level-1	Penrose
	000000000			00000000
Partition schemes				

Partitionability of subgraphs

Let

- $\mathbb{G} = (\mathbb{U}, \mathbb{E})$ a finite connected graph
- $\mathcal{C}_{\mathbb{G}} = \{ \text{connected spanning subgraphs of } \mathbb{G} \}$
- $\mathcal{T}_{\mathbb{G}} = \{ \text{trees belonging to } \mathcal{C}_{\mathbb{G}} \}$

Partial-order $\mathcal{C}_{\mathbb{G}}$ by bond inclusion:

$$G \leq \widetilde{G} \iff E(G) \subset E(\widetilde{G})$$

If $G \leq \widetilde{G}$, let

$$[G, \widetilde{G}] = \{ \widehat{G} \in \mathcal{C}_{\mathbb{G}} : G \leq \widehat{G} \leq \widetilde{G} \}$$

Truncation	Continous 0000000000	Correlations	Level-1	Penrose ○○ 0 ●○○○○○
Partition schemes				

Partition schemes

A partition scheme for $\mathcal{C}_{\mathbb{G}}$ is a map

$$\begin{array}{cccc} R: \mathcal{T}_{\mathbb{G}} & \longrightarrow & \mathcal{C}_{\mathbb{G}} \\ \tau & \longmapsto & R(\tau) \end{array}$$

such that

(i) E(R(τ)) ⊃ E(τ), and
(ii) C_G is the disjoint union of the sets [τ, R(τ)], τ ∈ T_G.

Truncation	$\mathbf{Continous}$	Correlations	Level-1	Penrose
Partition schemes				

Penrose scheme

- ▶ Fix an enumeration v_0, v_1, \ldots, v_n for the vertices of \mathbb{G}
- ▶ For each $\tau \in \mathcal{T}_{\mathbb{G}}$ let d(i) = tree distance of v_i to v_0
- $R_{\text{Pen}}(\tau)$ is obtained adding to $\tau \{v_i, v_j\} \in \mathbb{E} \setminus E(\tau)$ s.t.
 - (p1) d(i) = d(j) (edges between vertices of the same generation), or
 - (p2) d(i) = d(j) 1 and i < j (edges connecting to predecessors with smaller index).

Truncation

Continous

Correlations

Level-1

Penrose ○○○○○●○○○

Proof of Penrose identity

Penrose identity

For a partition scheme R, let

$$\mathcal{T}_R := \left\{ \tau \in \mathcal{T}_{\mathbb{G}} \mid R(\tau) = \tau \right\}$$

(set of R-trees).

Proposition

$$\sum_{G \in \mathcal{C}_{\mathbb{G}}} (-1)^{|E(G)|} = (-1)^{|\mathbb{V}|-1} |\mathcal{T}_R|$$

for any partition scheme R

Truncation

Continous

Correlations

Level-1

Penrose

Proof of Penrose identity

Proof of Penrose identity

For any numbers $x_e, e \in \mathbb{E}$,

$$\sum_{G \in \mathcal{C}_{\mathbb{G}}} \prod_{e \in E(G)} x_e = \sum_{\tau \in \mathcal{T}_{\mathbb{G}}} \prod_{e \in E(\tau)} x_e \sum_{\mathcal{F} \subset E(R(\tau)) \setminus E(\tau)} \prod_{e \in \mathcal{F}} x_e$$
$$= \sum_{\tau \in \mathcal{T}_{\mathbb{G}}} \prod_{e \in E(\tau)} x_e \prod_{e \in E(R(\tau)) \setminus E(\tau)} (1 + x_e)$$

• If $x_e = -1$, the last factor kills the contributions of any tree τ with $E(R(\tau)) \setminus E(\tau) \neq \emptyset$

For any tree,
$$|E(\tau)| = |\mathbb{V}| - 1 \square$$

11 dileation	0000000000	Correlations	Level-1	0000000000
Proof of Penrose ide	entity			
	C	Comments		

Correlations

Lovol-1

Ponroso

▶ Hard-core condition is crucial. If only soft repulsion,

 $|1+x_e| \le 1$

and we get the weaker tree-graph bound

$$\left|\sum_{G \in \mathcal{C}_{\mathbb{G}}} \prod_{e \in E(G)} x_e\right| \leq \sum_{\tau \in \mathcal{T}_{\mathbb{G}}} \prod_{e \in E(\tau)} |x_e| \leq |\mathcal{T}_{\mathbb{G}}|$$

▶ At any rate we have the identity

Continous

Truncation

$$\sum_{G \in \mathcal{C}_{\mathbb{G}}} \prod_{e \in E(G)} x_e = \sum_{\tau \in \mathcal{T}_{\mathbb{G}}} \prod_{e \in E(\tau)} x_e \prod_{e \in E(R(\tau)) \setminus E(\tau)} (1 + x_e)$$

Truncation

Continous 0000000000 Correlations

Level-1

Penrose

Proof of Penrose identity

Tree-with-larger-degrees bound

As Penrose conditions involve loops:

The smaller the number of loops, the easier to satisfy Penrose conditions

Hence, if for an incompatibility graph \mathcal{G} ,

 $T_{\mathcal{G}}$ = homogeneous tree with max. degree of \mathcal{G}

then

$$\left|\mathcal{T}^{ ext{Penr}}_{\mathcal{G},n}
ight|\ \subset\ \left|\mathcal{T}^{ ext{Penr}}_{T_{\mathcal{G}},n}
ight|$$

where $\mathcal{T}_{\mathcal{G},n}$ refers to all trees with *n* vertices

Hence, for the **univariate** case $(z_{\gamma} = z, \text{ only } \# \text{ of trees counts})$:

$$\mathcal{R}(\mathcal{G}) \supset \mathcal{R}(T_{\mathcal{G}})$$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000

Part V

Convergence criteria for hard-core polymers

We shall review three types of proofs:

- ▶ "Classical" (Cammarota, Brydges): defoliation of trees
- Inductive (Kotecký-Preiss, Dobrushin): "no-cluster-expansion"
- ▶ Classical revisited (F.-Procacci): trees from root up

We shall compare results for benchmark examples

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000

Outline

Review of formulas

Truncated functions for hard core Penrose identity

Classical convergence criterium

Classical majorizing series Summing "from leaves down" Classical criterium

Inductive approach

Classical approach revisited

New criterion Standard form of the criteria

Proof

The ingredients Convergence condition Explanation of the different criteria

Formulas 00000	Classical 00000	Inductive	New 0000	Proof 0000000
	TI	HE formula		

If

$$a(\gamma_1,\ldots,\gamma_n) = \prod_{\{i,j\}} \varphi(\gamma_i,\gamma_j)$$

then

$$a^{\mathrm{T}}(\gamma_1, \dots, \gamma_n) = \sum_{\substack{G \subset G_n \\ \mathrm{conn. span.}}} \prod_{\{i,j\} \in E(G)} \psi(\gamma_i, \gamma_j)$$

with $G_n = \text{complete graph on } \{1, \ldots, n\}$ and

$$\psi(\gamma_i, \gamma_j) = \varphi(\gamma_i, \gamma_j) - 1$$

Formulas	Classical	Inductive	New	Proof
●0000	00000		0000	0000000
Truncated funct	ions for hard core			

Truncated functions for hard core For hard core:

$$\psi(\gamma_i, \gamma_j) = \mathbb{1}_{\{\gamma_i \sim \gamma_j\}} - 1 = \begin{cases} -1 & \text{if } \gamma_i \nsim \gamma_j \\ 0 & \text{if } \gamma_i \sim \gamma_j \end{cases}$$

Hence: For each *n*-tuple $(\gamma_1, \ldots, \gamma_n)$ construct the graph

 $\mathcal{G}_{(\gamma_1,\dots,\gamma_n)}$ with $V(\mathcal{G}) = \{1,\dots,n\}$ and $E(\mathcal{G}) = \{\{i.j\} : \gamma_i \nsim \gamma_j\}$ Then

$$\phi^{T}(\gamma_{1},\ldots,\gamma_{n}) = \begin{cases} 1 & n=1\\ \sum\limits_{\substack{G \subset \mathcal{G}_{(\gamma_{1},\ldots,\gamma_{n})}\\G \text{ conn. spann.} \\ 0 & n \geq 2, \mathcal{G} \text{ not c.} \end{cases}$$

This formula involves a huge number of cancellations

Formulas	Classical	Inductive	New	Proof
○●000	00000		0000	0000000
Penrose identity				

Penrose identity

Penrose realized that these cancellations can be optimally handled through what is now known as the property of *partitionability* of the family of connected spanning subgraphs

Theorem

For any connected graph $\mathcal{G} = (\mathbb{V}, \mathbb{E})$ there exists a family of spanning trees —the Penrose trees $\mathcal{T}_{\mathcal{G}}^{\text{Penr}}$ — such that

$$\sum_{G \subset \mathcal{G}} (-1)^{|E(G)|} = (-1)^{|\mathbb{V}|-1} \big| \mathcal{T}_{\mathcal{G}}^{\text{Penr}} \big|$$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000
Penrose identity				

Penrose scheme

- ▶ Fix an enumeration v_0, v_1, \ldots, v_n for the vertices of \mathcal{G}
- ▶ For each $\tau \in \mathcal{T}_{\mathcal{G}}$ (thought as a tree rooted in v_0), define

d(i) = tree distance of v_i to v_0

- Let $R_{\text{Pen}}(\tau) = \tau$ plus all links $\{v_i, v_j\} \in \mathbb{E} \setminus E(\tau)$ s.t.
 - (p1) d(i) = d(j) (edges between vertices of the same generation), or
 - (p2) d(i) = d(j) 1 and i < j (edges connecting to predecessors with smaller index).

► Then,

$$\tau \in \mathcal{T}_{\mathcal{G}}^{\operatorname{Penr}} \iff R_{\operatorname{Pen}}(\tau) = \tau$$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000
Penrose identity				
	D	,		
	Pe	nrose trees		

General graph

- A Penrose tree for \mathcal{G} is a spanning tree s.t.
- (P1) Brothers are not be neighbors in \mathcal{G} and
- (P2) A (generalized) nephew-uncle pair is not linked in \mathcal{G} if nephew has larger index

Cluster-expansion graphs

- A Penrose tree for $\mathcal{G}_{(\gamma_0,\ldots,\gamma_n)}$ is a spanning tree s.t.
- (P1) Brothers are incompatible and
- (P2) (Generalized) nephews are incompatible with uncles with smaller index

Formulas	Classical	Inductive	New	Proof
0000	00000		0000	0000000
Penrose identity				

Tree-graph bound

In conclusion:

$$\left|\phi^{T}(\gamma_{0},\gamma_{1},\ldots,\gamma_{n})\right| = \left|\mathcal{T}^{\mathrm{Pen}}_{\mathcal{G}_{(\gamma_{0},\gamma_{1},\ldots,\gamma_{n})}}\right|$$

Historically, the *only* way Penrose identity was exploited was through the **tree-graph bound**:

$$\left|\phi^{T}(\gamma_{0},\gamma_{1},\ldots,\gamma_{n})\right| \leq \left|\mathcal{T}_{\mathcal{G}(\gamma_{0},\gamma_{1},\ldots,\gamma_{n})}\right|$$

where $\mathcal{T}_{\mathcal{G}} = \{$ connected spanning trees of $\mathcal{G}\}$

Formulas	Classical	Inductive	New	Proof
00000	0 0000		0000	0000000
Classical major	izing series			

"Classical" majorizing series

Using the tree-graph bound,

$$\left|\sum_{G \subset \mathbb{G}} (-1)^{|E(G)|}\right| = \left|\mathcal{T}^{\operatorname{Penr}}_{\mathbb{G}}\right| \leq \left|\mathcal{T}_{\mathbb{G}}\right|$$

we obtain

$$\Pi_{\gamma_0}(oldsymbol{
ho}) \ \le \ \sum_{n \ge 0} rac{1}{n!} \, \overline{T}_n(\gamma_0)$$

where $\overline{T}_0 = 1$ and

$$\overline{T}_n(\gamma_0) = \sum_{(\gamma_1, \dots, \gamma_n)} \sum_{\tau \in \mathcal{T}_{\mathcal{G}}_{(\gamma_0, \gamma_1, \dots, \gamma_n)}} \rho_{\gamma_1} \cdots \rho_{\gamma_n}$$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000
Classical major	izing series			

Contribution of a tree

Interchanging sum over polymers with sum over trees:

$$\overline{T}_{n}(\gamma_{0}) = \sum_{\tau \in \mathcal{T}_{n+1}^{0}} \sum_{\substack{(\gamma_{1}, \dots, \gamma_{n}) \text{ s.t.} \\ \tau \subset \mathcal{G}_{(\gamma_{0}, \gamma_{1}, \dots, \gamma_{n})}}} \rho_{\gamma_{1}} \cdots \rho_{\gamma_{n}}$$
$$= \sum_{\tau \in \mathcal{T}_{n+1}^{0}} \overline{T}_{\tau}(\gamma_{0})$$

where

$$\mathcal{T}_{n+1}^0 = \{ \text{trees of vertices } 0, 1, \dots n, \text{rooted in } 0 \}$$

Formulas	Classical	Inductive	New	Proof
00000	0000		0000	0000000
Summing "from	leaves down"			

Geometrical translation-invariant polymers

To compute \overline{T}_{τ} start summing over γ 's at leaves:

$$\prod_{j=1}^{s_i} \sum_{\gamma_{(i,j)} \nsim \gamma_i} \rho_{\gamma_{(i,j)}} = \left[\sum_{\gamma \nsim \gamma_i} \rho_{\gamma} \right]^{s_i}$$

For translation-invariant geometrical polymers,

$$\sum_{\gamma \not\sim \gamma_i} \rho_{\gamma} \leq |\gamma_i| \sum_{\gamma \ni 0} \rho_{\gamma}$$

Then, for each γ_i that is ancestor of leaves

$$\rho_{\gamma_{i}} \longrightarrow \rho_{\gamma_{i}} |\gamma_{i}|^{s_{i}} \left[\sum_{\gamma \ni 0} \rho_{\gamma}\right]^{s_{i}}$$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000
Summing "from	n leaves down"			

Summing "from leaves down"

Iterate! The sum over successive ancestors yields

$$\overline{T}_{ au}(\gamma_0) \leq |\gamma_0| \prod_{i=0}^n \Bigl[\sum_{\gamma
i 0}
ho_\gamma |\gamma|^{s_i} \Bigr]$$

- This bound depends only on s_0, s_1, \ldots, s_n
- The sum over trees τ brings a factor

(Cayley formula)

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000
Classical criterium				

Classical criterion

In consequence

$$\overline{T}_n(\gamma_0) \leq |\gamma_0| \ n! \sum_{\substack{s_0, s_1, \dots, s_n \\ \sum s_i = n-1}} \prod_{i=0}^n \left[\sum_{\gamma \ni 0} \rho_\gamma \ \frac{|\gamma|^{s_i}}{s_i!} \right]$$

Hence

$$\Pi_{\gamma_0}(oldsymbol{
ho}) \ \le \ |\gamma_0| \ \sum_{n \ge 0} \Bigl[\sum_{\gamma
i g 0}
ho_\gamma \, \mathrm{e}^{|\gamma|} \Bigr]^n$$

which converges if

$$\sum_{\gamma \ni 0} \rho_{\gamma} \, \mathrm{e}^{|\gamma|} \ < \ 1$$

[Cammarota~(1982),~Brydges~(1984)]

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000

Inductive arguments

Kotecký-Preiss (1986): Convergence if $a : \mathcal{P} \to [0, \infty)$ s.t.

$$\sum_{\gamma' \not\sim \gamma} \rho_{\gamma'} e^{a(\gamma')} \leq a(\gamma)$$

Dobrushin (1996): Convergence if $a : \mathcal{P} \to [0, \infty)$ s.t.

$$\rho_{\gamma} \leq \left(\mathrm{e}^{a(\gamma)} - 1 \right) \exp \left\{ -\sum_{\gamma' \not\approx \gamma} a(\gamma') \right\}$$

Key: Control $\frac{\Xi_{\Lambda}}{\Xi_{\Lambda \setminus \{\gamma_0\}}}$ through (deletion-contraction?)

$$\Xi_{\Lambda} = \Xi_{\Lambda \setminus \{\gamma_0\}} + z_{\gamma_0} \, \Xi_{\Lambda \setminus \mathcal{N}_{\gamma_0}^*}$$

 $[\mathcal{N}_{\gamma_0}^* = \{\text{polymers incompatible with } \gamma_0\}]$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000

Dobrushin criterion

Theorem

Assume

$$\rho_{\gamma} \leq \left(e^{a(\gamma)} - 1 \right) \exp\left\{ -\sum_{\gamma' \nsim \gamma} a(\gamma') \right\}$$
(5)

Then, if $|z_{\gamma}| \leq \rho_{\gamma}$

$$\left| \log \left| \frac{\Xi_{\Lambda}}{\Xi_{\Lambda \setminus \{\gamma_0\}}} \right| \right| \leq a(\gamma_0) \tag{6}$$

Note that if $\Lambda' \subset \Lambda$, telescoping,

$$\left|\log\left|\frac{\Xi_{\Lambda}}{\Xi_{\Lambda'}}\right|\right| \leq \sum_{\gamma \in \Lambda \setminus \Lambda'} a(\gamma) < \infty$$
(7)

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000

Proof of Dobrushin criterion

By induction on $|\Lambda|$. Start with

$$\left| rac{\Xi_{\Lambda}}{\Xi_{\Lambda \setminus \{\gamma_0\}}}
ight| \ \le \ 1 +
ho_{\gamma_0} \left| rac{\Xi_{\Lambda \setminus \mathcal{N}^*_{\gamma_0}}}{\Xi_{\Lambda \setminus \{\gamma_0\}}}
ight|$$

From (7)
$$\left|\frac{\Xi_{\Lambda}}{\Xi_{\Lambda\setminus\{\gamma_0\}}}\right| \leq 1 + \rho_{\gamma_0} \exp\left\{\sum_{\gamma \not\approx \gamma_0} a(\gamma)\right\}$$

And, by the criterion (5)

$$\left| \frac{\Xi_{\Lambda}}{\Xi_{\Lambda \setminus \{\gamma_0\}}} \right| \leq e^{a(\gamma_0)}$$

Then use logarithmic inequalities. \Box

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000

"Standard form" of the criteria

If we substitute

$$\mu_{\gamma} = \rho_{\gamma} e^{a_{\gamma}}$$
 (Kotecký-Preiss)
$$\mu_{\gamma} = e^{a_{\gamma}} - 1$$
 (Dobrushin)

We obtain convergence if there exists $\boldsymbol{\mu} \in [0,\infty)^{\mathcal{P}}$ such that

$$\begin{split} \rho_{\gamma_0} \; \exp \Bigl[\sum_{\gamma \nsim \gamma_0} \mu_{\gamma} \Bigr] \; &\leq \; \mu_{\gamma_0} \quad \text{(Kotecký-Preiss)} \\ \rho_{\gamma_0} \; \prod_{\gamma \nsim \gamma_0} \Bigl(1 + \mu_{\gamma} \Bigr) \; &\leq \; \mu_{\gamma_0} \quad \text{(Dobrushin)} \end{split}$$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000

$Comparison \ D \ \leftrightarrow \ KP$

D improves KP because

$$\prod_{\gamma \not \sim \gamma_0} (1 + \mu_{\gamma}) \leq \exp \left[\sum_{\gamma \not \sim \gamma_0} \mu_{\gamma} \right]$$

Differences:

- ▶ D lacks powers μ_{γ}^{ℓ}
- ▶ D exact for polymers with only self-exclusion

Formulas 00000	Classical 00000	Inductive	New 0000	Proof 0000000
	Ol	oservations		

- ▶ It looks as a hierarchy of approximations
- ► Dobrushin extracts extra information Which one?
- ▶ Why the form

$$\rho_{\gamma_0} \varphi_{\gamma_0}(\boldsymbol{\mu}) \leq \mu_{\gamma_0} ? \tag{8}$$

Work with A. Procacci:

- ▶ All further information must be in Penrose identity
- ▶ Form (8) suggests iteration

Formulas	Classical	Inductive	New	Proof
00000	00000		● 000	0000000
New criterion				

New condition (with A. Procacci)

For each $\gamma_0 \in \mathcal{P}$ let

$$\Xi_{\mathcal{N}_{\gamma_0}^*}(\boldsymbol{\mu}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n \\ \gamma_0 \nsim \gamma_i, \ \gamma_i \sim \gamma_j, \ 1 \le i, j \le n}} \mu_{\gamma_1} \mu_{\gamma_2} \dots \mu_{\gamma_n}$$

(grand-canonical part. funct. of the \mathcal{G} -nbhd of γ_0 , *including* γ_0) **Theorem**

If for $\rho \in [0,\infty)^{\mathcal{P}}$ there exists a $\mu \in [0,\infty)^{\mathcal{P}}$ such that

$$ho_{\gamma_0} \, \Xi_{\mathcal{N}^*_{\gamma_0}}(oldsymbol{\mu}) \ \le \ \mu_{\gamma_0} \ , \quad orall \gamma_0 \in \mathcal{P} \ ,$$

then $\Pi(
ho)$ converges for such ho

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000
New criterion				

$Comparison \ New \leftrightarrow D$

The improvement is expressed by the inequality

$$\Xi_{\mathcal{N}^*_{\gamma_0}}(\boldsymbol{\mu}) \leq \prod_{\gamma \not\sim \gamma_0} (1 + \mu_{\gamma})$$

LHS contains only monomials of *mutually compatible* polymers **Sources of improvement:**

- (I1) $\Xi_{\mathcal{N}^*_{\gamma_0}}$ has no triangle diagram (i.e. pairs of neighbors of γ_0 that are themselves neighbors)
- (12) In $\Xi_{\mathcal{N}_{\gamma_0}^*}$, the only monomial containing μ_{γ_0} is μ_{γ_0} itself, $(\gamma_0$ is incompatible with all other polymers in $\mathcal{N}_{\gamma_0}^*)$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	000000
New criterion				

Intermediate criterium

Our criterium does not have a product form

(Sokal) It may be useful to use the bound

$$\begin{aligned} \Xi_{\mathcal{N}^*_{\gamma_0}}(\boldsymbol{\mu}) &= \mu_{\gamma_0} + \Xi_{\mathcal{N}_{\gamma_0}}(\boldsymbol{\mu}) \\ &\leq \mu_{\gamma_0} + \prod_{\substack{\gamma \approx \gamma_0 \\ \gamma \neq \gamma_0}} (1 + \mu_{\gamma}) \end{aligned}$$

to obtain the Improved Dobrushin criterium

$$\rho_{\gamma_0} \left[\mu_{\gamma_0} + \prod_{\substack{\gamma \approx \gamma_0 \\ \gamma \neq \gamma_0}} \left(1 + \mu_{\gamma} \right) \right] \leq \mu_{\gamma_0}$$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000
Standard form	of the criteria			

Summary of conditions

Available convergence conditions are of the form

$$ho_{\gamma_0} \, arphi_{\gamma_0}(oldsymbol{\mu}) \ \le \ \mu_{\gamma_0}$$

with

$$\varphi_{\gamma_{0}}(\boldsymbol{\mu}) = \begin{cases} \exp\left[\sum_{\gamma \in \mathcal{N}_{\gamma_{0}}^{*}} \mu_{\gamma}\right] & \text{(Kotecký-Preiss)} \\ \prod_{\gamma \in \mathcal{N}_{\gamma_{0}}^{*}} (1 + \mu_{\gamma}) & \text{(Dobrushin)} \\ \mu_{\gamma_{0}} + \prod_{\gamma \in \mathcal{N}_{\gamma_{0}}} (1 + \mu_{\gamma}) & \text{(improved Dobrushin)} \\ \Xi_{\mathcal{N}_{\gamma_{0}}^{*}}(\boldsymbol{\mu}) & \text{(new)} \end{cases}$$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	00 0000
The ingredients				

Proof. 1st ingredient: Improved tree bound Retain only (P1): Brothers may not be linked in \mathcal{G}

If $\{i, i_1\}$ and $\{i, i_2\}$ are edges of τ , then $\gamma_{i_1} \sim \gamma_{i_2}$

In this way $\boldsymbol{\rho} \Pi(\boldsymbol{\rho}) \leq \boldsymbol{\rho}^*$, with

$$\rho_{\gamma_0}^* := \rho_{\gamma_0} \left[1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} \sum_{\tau \in \mathcal{T}_n^0} \prod_{i=0}^n c_{s_i}(\gamma_i, \gamma_{i_1}, \dots, \gamma_{i_{s_i}}) \rho_{\gamma_{i_1}} \dots \rho_{\gamma_{i_{s_i}}} \right]$$

where i_1, \ldots, i_{s_i} = descendants of i and

$$c_n(\gamma_0,\gamma_1,\ldots,\gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \nsim \gamma_i\}} \prod_{j=1}^n \mathbb{1}_{\{\gamma_i \sim \gamma_j\}}$$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	000000
The ingredients				

2nd ingredient: Iterative generation of trees Consider the function $T_{\rho}: [0,\infty)^{\mathcal{P}} \to [0,\infty]^{\mathcal{P}}$ defined by

$$\left(\boldsymbol{T}_{\boldsymbol{\rho}}(\boldsymbol{\mu})\right)_{\gamma_{0}} = \rho_{\gamma_{0}}\left[1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{(\gamma_{1}, \dots, \gamma_{n}) \in \mathcal{P}^{n}} c_{n}(\gamma_{0}, \gamma_{1}, \dots, \gamma_{n}) \, \mu_{\gamma_{1}} \dots \mu_{\gamma_{n}}\right]$$

or

$$T_{
ho}(\mu) =
ho \, arphi(\mu)$$

Diagrammatically:

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	000000
The ingredients				

Summing "from the roots up"

The diagrams of the series

$$T_{oldsymbol{
ho}}(T_{oldsymbol{
ho}}(oldsymbol{\mu})) \;=\; T^2_{oldsymbol{
ho}}(oldsymbol{\mu})$$

have black dots replaced by each of the preceding diagrams. That is, $T^2_{\rho}(\mu) =$ sums over trees with up to two generations with • in 2nd generation

Likewise, $T^n_{\rho}(\mu) =$ sums over trees with up to *n* generations with • in n-th generation

Iterating,

$$T^n_{oldsymbol{
ho}}(oldsymbol{
ho})
earrow oldsymbol{
ho}^st oldsymbol{
ho}^st$$

Alternatively, ρ^* generated by replacing $\bullet \rightarrow \rho^*$:

$$oldsymbol{
ho}^* \ = \ oldsymbol{
ho} \, oldsymbol{arphi}(oldsymbol{
ho}^*) \qquad ext{or} \qquad oldsymbol{
ho}^* \ = \ oldsymbol{T}_{oldsymbol{
ho}}(oldsymbol{
ho}^*)$$

Cheap way to ensure finiteness: Existence of μ s.t.

$$T_{\rho}(\mu) \leq \mu \tag{9}$$

Then, by positiveness of the terms:

$$oldsymbol{
ho}^* \ \le \ oldsymbol{T}^n_{oldsymbol{
ho}}(oldsymbol{\mu}) \ \le \ \cdots \ \le oldsymbol{T}^2_{oldsymbol{
ho}}(oldsymbol{\mu}) \ \le \ oldsymbol{\mu}$$

Furthermore, if there is convergence, then (9) holds for $\mu = \rho^*$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000
Convergence con	dition			

Theorem (*)

 $\boldsymbol{\rho}^*$ converges iff $\boldsymbol{\rho} \, \boldsymbol{\varphi}(\boldsymbol{\mu}) \leq \boldsymbol{\mu}$ for some $\boldsymbol{\mu} \in [0,\infty)^{\mathcal{P}}$

Within the region of convergence

(i) $T_{\rho}^{n}(\rho) \nearrow \rho^{*}$ (ii) $\rho^{*} = T_{\rho}(\rho^{*})$ or $\rho = \rho^{*}/\varphi(\rho^{*})$: $\rho^{*} = f(\rho) \longrightarrow f^{-1}(\rho^{*}) = \frac{\rho^{*}}{\rho^{*}}$

 $oldsymbol{
ho}^* = oldsymbol{f}(oldsymbol{
ho}) \implies oldsymbol{f}^{-1}(oldsymbol{
ho}^*) = rac{oldsymbol{
ho}^*}{oldsymbol{arphi}(oldsymbol{
ho}^*)}$

(iii) For each $n \in \mathbb{N}$,

 $ho \Pi \leq
ho^* \leq T^{n+1}_{
ho}(\mu) \leq T^n_{
ho}(\mu) \leq \mu$
Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000
Explanation of	the different criteria			

$T_{ ho}$ for the new criterion

\mathbf{If}

$$c_n(\gamma_0,\gamma_1,\ldots,\gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \nsim \gamma_i\}} \prod_{j=1}^n \mathbb{1}_{\{\gamma_i \sim \gamma_j\}}$$

then

$$\left(\boldsymbol{T}_{\boldsymbol{\rho}}(\boldsymbol{\mu})\right)_{\gamma_{0}} = \rho_{\gamma_{0}}\left[1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{\substack{(\gamma_{1}, \dots, \gamma_{n}) \in \mathcal{P}^{n} \\ \gamma_{0} \nsim \gamma_{i}, \gamma_{i} \sim \gamma_{j}, 1 \leq i, j \leq n}} \mu_{\gamma_{1}} \dots \mu_{\gamma_{n}}\right]$$

$$= \rho_{\gamma_0} \Xi_{\mathcal{P}_{\gamma_0}}(\boldsymbol{\mu})$$

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	000000
Explanation of	the different criteria			

T_{ρ} for the Dobrushin criterion

If we replace $\gamma_i \nsim \gamma_j$ by the weaker requirement $\gamma_i \neq \gamma_j$:

$$c_n^{\text{Dob}}(\gamma_0, \gamma_1, \dots, \gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \not\sim \gamma_i\}} \prod_{j=1}^n \mathbb{1}_{\{\gamma_i \neq \gamma_j\}}$$

which yields

$$\begin{aligned} \left(\boldsymbol{T}^{\text{Dob}}_{\boldsymbol{\rho}}(\boldsymbol{\mu}) \right)_{\gamma_{0}} &= \rho_{\gamma_{0}} \left[1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{\substack{(\gamma_{1}, \dots, \gamma_{n}) \in \mathcal{P}^{n} \\ \gamma_{0} \nsim \gamma_{i}, \gamma_{i} \neq \gamma_{j}, 1 \leq i, j \leq n}} \mu_{\gamma_{1}} \dots \mu_{\gamma_{n}} \right] \\ &= \rho_{\gamma_{0}} \prod_{\gamma \nsim \gamma_{0}} (1 + \mu_{\gamma}) \end{aligned}$$

(Dobrushin condition)

Formulas	Classical	Inductive	New	Proof
00000	00000		0000	0000000
E-mlanation of t	he different eniterie			

Explanation of the different criteria

T_{ρ} for the Kotecký-Preiss criterion

If requirement $\gamma_i \nsim \gamma_j$ is ignored altogether,

$$c_n^{\mathrm{KP}}(\gamma_0,\gamma_1,\ldots,\gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \not\sim \gamma_i\}}$$

and

$$\begin{aligned} \left(\boldsymbol{T}_{\boldsymbol{\rho}}^{\mathrm{KP}}(\boldsymbol{\mu}) \right)_{\gamma_{0}} &= \rho_{\gamma_{0}} \bigg[1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{\substack{(\gamma_{1}, \dots, \gamma_{n}) \in \mathcal{P}^{n} \\ \gamma_{0} \approx \gamma_{i}, 1 \leq i \leq n}} \mu_{\gamma_{1}} \dots \mu_{\gamma_{n}} \bigg] \\ &= \rho_{\gamma_{0}} \exp \bigg[\sum_{\gamma \not\approx \gamma_{0}} \mu_{\gamma} \bigg] \end{aligned}$$

(Kotecký-Preiss)

1-d	Finite	Geometrical	$\begin{array}{c} \mathbf{Chromatic} \\ \texttt{0000000000} \end{array}$	HS 000	Perspectives

Part VI

Applications and examples

We compare convergence results for

- ▶ Incompatibility graphs of bounded degree
- ▶ Geometrical polymers
- > Zeroes of the chromatic polynomial
- Hard spheres

1-d	Finite	Geometrical	Chromatic 00000000	HS 000	Perspectives
		Οι	ıtline		
	Univariate cas	se			
	Incompatibilit	y graphs of	finite degree		
Geometrical polymers					
	Zeroes of chro Sources of in General stra Sokal-Borgs	pmatic polyno nprovement tegy	omials		

Improved bounds

Hard spheres

The bounds

Perspectives

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	

Univariate case: $z_{\gamma} = z$

$$\frac{\rho^*}{\rho} = 1 + \sum_{n=1}^{\infty} \frac{\rho^n}{n!} \left[\sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} \sum_{\tau \in \mathcal{T}_n^0} \prod_{i=0}^n c_{s_i}(\gamma_i, \gamma_{i_1}, \dots, \gamma_{i_{s_i}}) \right]$$

and

$$\varphi(\mu) = 1 + \sum_{n \ge 1} \frac{\mu^n}{n!} \left[\sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} c_n(\gamma_0, \gamma_1, \dots, \gamma_n) \right]$$

Then, the radius of convergence of ρ^* is (exactly!)

$$\sup_{\mu>0}\frac{\mu}{\varphi(\mu)}$$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	

Single-polymer case

Take
$$\mathcal{P} = \{\gamma\}$$
 and $c_{s_i}(\gamma, \gamma, \dots, \gamma) = c_{s_i}$, then
$$\frac{\rho^*}{\rho} = 1 + \sum_{n=1}^{\infty} \frac{\rho^n}{n!} \Big[\sum_{\tau \in \mathcal{T}_n^0} \prod_{i=0}^n c_{s_i} \Big]$$

and

$$\varphi(\mu) = 1 + \sum_{n \ge 1} c_n \, \frac{\mu^n}{n!}$$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	

Something known

Particular case: $c_n = 1$ Then,

$$\rho^* = \sum_{n=1}^{\infty} \frac{n^{n-1}}{n!} \rho^n , \quad \varphi(\mu) = e^{\mu}$$

Theorem (*) implies:

(i) Radius of convergence $= \sup_{\mu>0} \mu e^{-\mu} = e^{-1}$

(ii) For $0 < x < e^{-1}$

$$c = f(x) = \sum_{n=1}^{\infty} \frac{n^{n-1}}{n!} x^n \quad \Longleftrightarrow \quad \begin{cases} c = x e^c \\ f^{-1}(c) = c e^{-c} \\ f(x) = x e^{f(x)} \end{cases}$$

f(x) = Lambert W function

Comparison: Graphs of maximal degree Δ

Condition	Radius
Kotecký-Preiss	$\frac{1}{\left(\Delta+1\right)e}$
Dobrushin	$\frac{\Delta^{\Delta}}{(\Delta+1)^{\Delta+1}}$
Improved Dobrushin =new for $(\Delta - 1)$ -reg. tree	$\left[1 + \frac{\Delta^{\Delta}}{(\Delta - 1)^{\Delta - 1}}\right]^{-1}$
Scott-Sokal	$\frac{(\Delta-1)^{(\Delta-1)}}{\Delta^{\Delta}} (*)$
New: $(\Delta+1)$ -complete graph	$(\Delta + 1)^{-1} (*)$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	

Explanation: Criteria for graphs of degree Δ

Condition	Criterion
Kotecký-Preiss	$\rho \le \mu e^{-(\Delta+1)\mu}$
Dobrushin	$\rho \le \frac{\mu}{(1+\mu)^{\Delta+1}}$
improved Dobrushin	$\rho < \frac{\mu}{\mu}$
=new for $(\Delta - 1)$ -reg. tree	$\overset{\rho}{=} \mu + (1+\mu)^{\Delta}$

HS 000 Perspectives

Comparison: Graphs of maximal degree 6

Condition	Radius
Kotecký-Preiss	0.052
Dobrushin	0.056
Improved Dobrushin	0.062
Scott-Sokal	0.067
New: Domino in \mathbb{Z}^2	0.076
New: Triangular lattice	0.078
New: complete graph	0.142

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	

Explanation: New criteria for graphs of degree 6

Model	Criterion
Domino in \mathbb{Z}^2	$\rho \leq \frac{\mu}{1+7\mu+9\mu^2}$
Triangular lattice	$\rho \le \frac{\mu}{1 + 7\mu + 8\mu^2 + 2\mu^3}$
$(\Delta+1)$ -complete graph	$\rho \leq \frac{\mu}{1 + (\Delta + 1)\mu}$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	

Improvements for geometrical polymers

It is useful to pass to functions $a(\gamma)$ defined by $\mu_{\gamma} = \rho_{\gamma} e^{a(\gamma)}$

Our new condition becomes

$$1 + \sum_{n \ge 1} \sum_{\substack{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}\\\gamma_0 \cap \gamma_i \neq \emptyset, \gamma_i \cap \gamma_j = \emptyset, 1 \le i, j \le n}} \prod_{i=1}^n \rho_{\gamma_i} e^{a(\gamma_i)} \le e^{a(\gamma_0)}$$

Keep: each of $\gamma_1, \ldots, \gamma_n$ intersects a *different* point in γ_0 (otherwise they would overlap). Hence

(i) $n \leq |\gamma_0|$

(ii) *n* different points in γ_0 are touched by $\gamma_1 \cup \cdots \cup \gamma_n$ These *n* points can be chosen in $\binom{|\gamma_0|}{n}$ ways

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	

"New" condition for geometrical polymers

Hence, the left-hand side is less or equal than

$$1 + \sum_{n=1}^{|\gamma_0|} {|\gamma_0| \choose n} \left[\sup_{\substack{x \in \gamma_0 \\ \gamma \ni x}} \sum_{\substack{\gamma \in \mathcal{P} \\ \gamma \ni x}} \rho_\gamma e^{a(\gamma)} \right]^n = \left[1 + \sup_{\substack{x \in \gamma_0 \\ \gamma \ni x}} \sum_{\substack{\gamma \in \mathcal{P} \\ \gamma \ni x}} \rho_\gamma e^{a(\gamma)} \right]^{|\gamma_0|}$$

This leads to the condition

$$\sup_{x \in \gamma_0} \sum_{\substack{\gamma \in \mathcal{P} \\ \gamma \ni x}} \rho_{\gamma} e^{a(\gamma)} \leq e^{a(\gamma_0)/|\gamma_0|} - 1$$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	

Gruber-Kunz condition

In practice, $a(\gamma)$ is chosen of the form $a(\gamma) = a |\gamma|$, with a > 0:

- ▶ This the expected optimal asymptotic behavior for $|\gamma|$ large
- ► Calculations are reduced to the determination of a [General dependence: to deal better with small polymers] If, in addition,

\sup	\longrightarrow	\sup
$x \in \gamma_0$		$x \in \mathbb{V}$

"new" condition = Gruber-Kunz (1971) condition

Originally proven using Kirkwood-Salzburg, can also be proven inductively

HS 000 Perspectives

Comparison: Geometrical polymers

Criterion	Condition		
Kotecký-Preiss	$\sup_{x} \sum_{\gamma \in \mathcal{P}: \gamma \ni x} \rho_{\gamma} \mathrm{e}^{a \gamma } \leq a$		
Dobrushin	$\sup_{x} \prod_{\gamma \in \mathcal{P}: \gamma \ni x} \left[1 + \rho_{\gamma} e^{a \gamma } \right] \leq e^{a}$		
Gruber-Kunz	$\sup_{x} \sum_{\gamma \in \mathcal{P}: \gamma \ni x} \rho_{\gamma} e^{a \gamma } \leq e^{a} - 1$		

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	

Zeros of chromatic polynomials

No zeros = convergence of cluster expansion for $\gamma \subset \mathbb{V}$ with

$$z_{\gamma}(q) = q^{-(|\gamma|-1)} \sum_{\substack{\mathbf{B} \subset \mathcal{B}_{\gamma} \\ (\gamma, \mathbf{B}) \text{ conn.}}} (-1)^{|\mathbf{B}|}$$

Available criteria

$$\sup_{x} \sum_{\gamma \in \mathcal{P}: \gamma \ni x} \rho_{\gamma} e^{a|\gamma|} \leq \begin{cases} a & (KP) \\ e^{a} - 1 & (GK) \end{cases}$$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			● 0 0000000	000	

Double improvement

Combining above expressions, zeros are excluded if

$$\sum_{n \ge 2} e^{an} C_n^q \le \begin{cases} a & (KP) \\ e^a - 1 & (GK) \end{cases}$$

with

$$C_n^q = \sup_{x \in \mathbb{V}} \sum_{\substack{\gamma \subset \mathbb{V}: \ x \in \gamma \\ |\gamma| = n}} \left| z_\gamma(q) \right|$$

Two sources of improvement:

(i) Use of GK instead of KP

(ii) Better estimation of C_n^q thanks to Penrose

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	

Successive bounds

$$C_n^q \leq \left(\frac{1}{q}\right)^{n-1} T_n$$

with

$$T_n = \begin{cases} \sup_{v_0 \in \mathbb{V}} t_n^{\operatorname{Pen}}(\mathbb{G}, v_0) \\ \sup_{v_0 \in \mathbb{V}} t_n(\mathbb{G}, v_0) \\ \frac{n^{n-1}}{n!} \Delta^{n-1} \end{cases}$$

 $t_n(\mathbb{G}, v_0) = \#$ subtrees of \mathbb{G} , with *n* vertices, including v_0 $t_n^{\text{Pen}}(\mathbb{G}, v_0) = \#$ of Penrose subtrees rooted at v_0

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	
Genera	l strategy				

General strategy

Chromatic polynomial free of zeros in the region

$$\begin{aligned} |q| &\geq \min_{a\geq 0} \inf \left\{ \kappa : \sum_{n=1}^{\infty} T_n \left[\frac{e^a}{\kappa} \right]^{n-1} \leq \left\{ \begin{array}{c} 1+a e^{-a} & (KP) \\ 2-e^{-a} & (GK) \end{array} \right\} \right\} \\ &= \min_{a\geq 0} e^a \left[\sup \left\{ x : F(x) \leq \left\{ \begin{array}{c} 1+a e^{-a} & (KP) \\ 2-e^{-a} & (GK) \end{array} \right\} \right\} \right]^{-1} \end{aligned}$$

with

$$F(x) = \sum_{n=1}^{\infty} T_n x^{n-1}$$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	
Sokal-B	orgs				

Sokal-Borgs bound

For the weakest choice $T_n = n^{n-1} \Delta^{n-1}/n!$,

$$F(x) = \frac{f(\Delta x)}{\Delta x} = e^{f(\Delta x)}$$

for f seen above. Hence

$$F(x) \leq 1 + a e^{-a} \implies f(\Delta x) \leq \ln(1 + a e^{-a})$$

and, as $f^{-1}(c) = c e^{-c}$, there are no zeros if

$$|q| \ge \min_{a\ge 0} \frac{\exp\left\{a + \ln(1+ae^{-a})\right\}}{\ln(1+ae^{-a})} \Delta$$

GK improvement: $1 + a e^{-a} \rightarrow 2 - e^{-a} (7.97 \rightarrow 6.91)$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	
Sokal-Bor	gs				

Improved bound

 \mathbbm{G} of maximal degree Δ

Pessimistic estimation:

$$F(x) = \frac{f(x)}{x}$$
 with $f(x) = \sum_{n \ge 1} t_n(\Delta) x^n$

 $t_n(\Delta) = \#$ of *n*-vertex subtrees in the Δ -tree incl. a fixed vertex

To construct f(x):

Start with weight x and choose branches (out of Δ)

► At the end of each branch, repeat!

Hence:

$$f(x) = x [1 + f(x)]^{\Delta}$$
 and $f^{-1}(c) = \frac{c}{(1+c)^{\Delta}}$

[Exercise: prove this through Theorem (*)]

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	
Sokal-Borgs					

Sokal bound

$$F(x) \le 1 + a e^{-a} \implies f(x) \le (1 + a e^{-a})^{1/\Delta} - 1$$

 $\implies x \le \frac{(1 + a e^{-a})^{1/\Delta} - 1}{1 + a e^{-a}}$

1st improvement: except for root, only $\Delta - 1$ branches available

$$f_{\Delta}(x) = x[1 + f_{\Delta-1}(x)]^{\Delta}$$

This yields absence of zeros for (Sokal's table)

$$|q| \ge \min_{a>0} \frac{\mathrm{e}^{a}(1+a\mathrm{e}^{-a})^{1-\frac{1}{\Delta}}}{(1+a\mathrm{e}^{-a})^{\frac{1}{\Delta}}-1}$$

2nd improvement: $1 + ae^{-a} \rightarrow 2 - e^{-a}$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			0000000000	000	
Improv	ed bounds				

Use of Penrose trees

- ▶ Penrose trees exclude triangle diagrams
- ▶ Root can link to any neighbor
- Other vertices link to neighbors \neq predecessor

For $k = 1, \ldots \Delta$, let

$$t_k^{\mathbb{G}} = \sup_{v_0 \in \mathbb{V}} \left| \left\{ U \subset \mathcal{N}_{v_0}^* : |U| = k \text{ and } \{v, v'\} \notin \mathbb{E} \; \forall v, v' \in U \right\} \right|$$

(maximal number of families of k vertices that have a common neighbor but are not neighbors between themselves)

$$\widetilde{t}_{k}^{\mathbb{G}} = \sup_{v_{0} \in \mathbb{V}} \max_{v \in \mathcal{N}_{v_{0}}^{*}} \left| \left\{ U \subset \mathcal{N}_{v_{0}}^{*} \backslash \{v\} : |U| = k \text{ and } \{v, v'\} \notin \mathbb{E} \; \forall v, v' \in U \right\} \right|$$

(same as above but excluding, in addition, one of the neighbors)

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			000000000	000	

Improved bounds

Doubly improved bound

Then

$$Z_{\mathbb{G}}(x) = 1 + \sum_{k=1}^{\Delta} t_k^{\mathbb{G}} x^k$$
(10)

plays the role of $(1+x)^{\Delta}$ in Sokal's argument, and

$$\widetilde{Z}_{\mathbb{G}}(x) = 1 + \sum_{k=1}^{\Delta-1} \widetilde{t}_k^{\mathbb{G}} x^k$$
(11)

plays the role of $1 + f_{\Delta-1}$. Using also GK:

$$|q| \geq \min_{a>0} e^{a} \frac{\tilde{Z}_{\mathbb{G}} \left(Z_{\mathbb{G}}^{-1}(2-e^{-a}) \right)}{Z_{\mathbb{G}}^{-1}(2-e^{-a})}$$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	
Improv	ed bounds				

Comparison: Zeros of chromatic polynomials

Upper bounds of the radius of the polydisc containing the zeros of the chromatic polynomials for graphs of maximum degree Δ

	General graph		Complete grap	
Δ	Sokal	New	New	Exact
2	13.23	10.72	9.90	2
3	21.14	17.57	15.75	3
4	29.08	24.44	21.58	4
6	44.98	38.24	33.24	6
Any	7.97Δ	6.91Δ	5.83Δ	Δ

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	•00	
The boi	inds				

Classical bound for the hard-sphere gas

$$\varphi_{\gamma_0}(\mu) = 1 + \sum_{n \ge 1} \frac{\mu^n}{n!} \int_{\Lambda^n} dx_1 \cdots dx_n \prod_i \mathbb{1}_{\{|x_i - x_0| \le R\}}$$
$$= \exp[V_d(R) \mu]$$

with $V_d(R)$ = volume of *d*-dimensional sphere of radius RHence convergence if

$$|z| V_d(R) < \max_{\mu} \frac{\mu}{\exp[V_d(R)\mu]} = \frac{1}{e}$$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			000000000	000	
The bou	nds				

Analycity for the hard-sphere gas: New bound

$$|z| V_d(R) \leq \max_{\mu > 0} \frac{\mu}{C_d(\mu)}$$

where

$$C_d(\mu) = \sum_{k \ge 0} \frac{\mu^k}{k!} \frac{1}{[V_d(1)]^k} \int_{\substack{|y_i| \le 1\\|y_i - y_j| > 1}} dy_1 \dots dy_k$$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	
The bo	unds				

Hard-sphere gas in two dimensions

If d = 2:

Classical: $|z| V_2(R) \le 0.36787...$ New: $|z| V_2(R) \le 0.5107$

1-d	Finite	Geometrical	Chromatic	HS	Perspectives
			00000000	000	

Directions for further research

- ▶ Incorporation of additional constraints in Penrose trees
- ▶ Use of other partition schemes
- ▶ Inductive proof?
- Extension to polymers with soft interactions (in progress)
- ▶ Uncountably many polymers (eg. quantum contours)
- ▶ Revisit "classical" results based on cluster expansions

Part VII

Alternative probabilistic scheme

The alternative treatment has the following features:

- ▶ It is probabilistic, hence only positive activities
- ▶ Basic measures = invariant measures for point processes
- ▶ Larger region of validity, but no analyticity
- ▶ Yields a "universal" perfect simulation scheme

Process 000 Perfect simulation

Outline

The process and its schemes

Basic process Forward-forward and forward-backwards schemes

Perfect simulation

Probabilistic approach (with P. Ferrari and N. Garcia)

Basic measures are invariant for the following dynamics:

- Attach to each polymer γ a poissonian clock with rate z_{γ}
- When the clock rings, γ tries to be born
- ▶ It succeeds if no other γ' present with $\gamma \nsim \gamma'$
- Once born, the polymer has an $\exp(1)$ lifespan

Alternative scheme

1st step: free process

- ▶ Generate first a *free process* where *all* birth are succesful
- ▶ Associate to each born polymer γ a space-time *cylinder*

$$C^{\gamma} = \left(\gamma, [\operatorname{Birth}_{C^{\gamma}}, \operatorname{Death}_{C^{\gamma}}]\right)$$

2nd step: cleaning

To decide whether a given cylinder C^{γ} remains a live, determine its $clan\ of\ ancestors$

$$\begin{aligned} \boldsymbol{A}_1(C^{\gamma}) &= \left\{ C' : \operatorname{Base}_{C'} \nsim \gamma, \operatorname{Birth}_{C^{\gamma}} \in [\operatorname{Birth}_{C'}, \operatorname{Death}_{C'}] \right\} \\ \boldsymbol{A}_{n+1}(C^{\gamma}) &= \mathbf{A}_1 \left(\mathbf{A}_n(C^{\gamma}) \right) \\ \boldsymbol{A}(C^{\gamma}) &= \bigcup_n \mathbf{A}_n(C^{\gamma}) \end{aligned}$$

Forward-forward scheme

If $\boldsymbol{A}(C^{\gamma})$ is finite. do the cleaning starting from the "mother cylinder"

- ▶ Keep mother
- ▶ Erase first children
- ▶ Keep new mothers

► :

This is a *forward-forward* scheme

Backward-forward scheme

Ancestors clan can be constructed backwards (Poisson and exponential distributions are reversible)

To construct the clan of ancestors of a finite window Λ :

- ► Generate, backwards, marks at rate $z_{\gamma} e^{-s}$ for each $\gamma \nsim \Lambda$
- These are cylinders born at -s and surviving up to 0
- ▶ Take the first mark; ignore the rest. If its basis is γ_1
- ▶ Repeat with

$$\begin{array}{rcl} \Lambda & \to & \Lambda \cup \{\gamma_1\} \\ s & \to & s - \left\{ \begin{array}{cc} \operatorname{Birth}_{\gamma_1} & \operatorname{if} \gamma \nsim \gamma' \\ 0 & \operatorname{if} \gamma \nsim \Lambda, \gamma \sim \gamma_1 \end{array} \right. \end{array}$$

 $\blacktriangleright \cdots \longrightarrow \mathbf{A}^{\Lambda}$
Perfect simulation

If

$$\mathbb{P}(\{\mathbf{A}^{\Lambda} \text{ finite}\}) = 1 \tag{12}$$

cleaning leads $\mathit{exactly}$ to a sample of the basic measure

Sufficient conditions for (12)?

- ▶ Clan of ancestors defines an *oriented percolation model*
- Lack of percolation \implies (12)
- ▶ Can dominate by a branching process:
 - \blacktriangleright branches = ancestors
 - ▶ branching rate = mean surface-area of cylinders:

$$\frac{1}{|\gamma|} \sum_{\theta \nsim \gamma} |\theta| \, z_{\theta} \, \times \, 1$$

(geometrical case)

Extinction condition

Extinction of the branching process implies (12)

Hence, perfect simulation if

$$rac{1}{|\gamma|}\sum_{ heta
asymptut} | heta| \; z_{ heta} \; \leq \; 1$$

Under this condition

- $\operatorname{Prob} = \lim_{\Lambda} \operatorname{Prob}_{\Lambda}$ exists
- Mixing properties

$$\left|\operatorname{Prob}(\{\gamma_0, \gamma_1\}) - \operatorname{Prob}(\{\gamma_0\}) \operatorname{Prob}(\{\gamma_1\})\right| \leq e^{-M \operatorname{dist}(\gamma_0, \gamma_1)}$$

• CLT: If A depends on a finite # of polymers

$$\frac{1}{\sqrt{\Lambda}} \sum_{x \in \Lambda} \mathbb{1}_{\{A+x\}} \xrightarrow{}{} \mathcal{N}(0, D)$$

with $D = \sum_{x} \operatorname{Prob}(A \cup A + x)$

Comments

- ▶ Perfect simulation of a *finite* window of the *infinite* Prob
- ▶ Universal perfect simulation algorithm
- ▶ Scheme = alternative definition of Prob
- ▶ Hence, new way to prove its properties in a larger region
- ▶ No analyticity, no info on zeros of partition functions

Process 000

•

Perfect simulation